
Benchmarking distributed data warehouse solutions
for storing genomic variant information – version

with tracked changes

Marek S. Wiewiórka1, Dawid P. Wysakowicz1, Micha l J. Okoniewski2 and
Tomasz Gambin ∗1,3

1Institute of Computer Science, Warsaw University of Technology,
Warsaw, 00-665, Poland

2Scientific IT Services, ETH Zurich, Zurich, 8092, Switzerland
3
:::::::::::::::
Department

:::
of

:::::::::::
Medical

::::::::::::
Genetics,

:::::::::::
Institute

::::
of

::::::::::
Mother

:::::
and

:::::::::
Child,

:::::::::::
Warsaw,

::::::::::
01-211,

:::::::::
Poland

::::::::
March

::::
31,

:::::::
2017

Abstract

Motivation: Genomic-based personalised medicine encompasses storing, analysing
and interpreting genomic variants as its central issues. At a time when thousands of
patients’ sequenced exomes and genomes are becoming available, there is a grow-
ing need for efficient database storage and querying. The answer could be the
application of modern distributed storage systems and query engines. However,
the application of large genomic variant databases to this problem have not been
sufficiently far explored so far in the literature.
Methods: To investigate the effectiveness of modern columnar storage (column-
oriented DBMS) and query engines, we have developed a prototypic genomic variant
data warehouse, populated with large generated content of genomic variants and
phenotypic data. Next, we have benchmarked performance of a number of com-
binations of distributed storages and query engines on a set of SQL queries that
address biological questions essential for both research and medical applications.
In addition, a non-distributed, analytical database (MonetDB) has been used as a
baseline.
Results and Discussion: Comparison of query execution times confirm that
distributed data warehousing solutions outperform classic relational database man-

0
::::::::::::
Corresponding

:::::::
author:

::::::::::::::::::::
tgambin@ii.pw.edu.pl

1



agement systems. Moreover, pre-aggregation and further denormalization of data,
which reduce the number of distributed join operations, significantly improve query
performance by several orders of magnitude. Most of distributed back-ends offer
a good performance for complex analytical queries, while the ORC format paired
with Presto and Parquet with Spark 2 query engines provide, on average, the low-
est execution times. Apache Kudu on the other hand, is the only solution that
guarantees a sub-second performance for simple genome range queries returning a
small subset of data, where low-latency response is expected, while still offering
decent performance for running analytical queries. In summary, research and clin-
ical applications that require the storage and analysis of variants from thousands
of samples can benefit from the scalability and performance of distributed data
warehouse solutions.
Supplementary information: The detailed description of the project can be
found at https://github.com/ZSI-Bio/variantsdwh

1 INTRODUCTION

1.1 Variant information in genomic-based personalised
medicine and biomedical research

In the current era of high-throughput sequencing, the reliable and comprehensive anal-
ysis of genomic variant data have become a central task in many clinical and research
applications related to precision personalised medicine. Joint analysis of such data from
thousands of samples collected under large scale sequencing projects, such as Exome
Sequencing Project (ESP, http://evs.gs.washington.edu/EVS/), The Atherosclerosis
Risk in Communities Study (ARIC) [1], Centers for Mendelian Genomics (CMG) [2],
UK10K [3], The Cancer Genome Atlas (TCGA) [4] ) provides a detailed and medically
useful insight into molecular basis of many genetic conditions.

Although a plethora of statistical methods (e.g. for variant prioritization [5, 6, 7, 8, 9]
or variant association [10, 11, 12, 13, 14] was developed, there is a lack of tools that allow
researchers to perform ad hoc, unrestricted queries on large data sets. Such tools should be
powerful enough to deal with population-scale sequencing data that will be generated by
such large-scale projects as Genomic England’s ”100,000 Genomes Project” (http://www.
genomicsengland.co.uk/the-100000-genomes-project/) or Precision Medicine Ini-
tiative (PMI, http://www.nih.gov/precision-medicine-initiative-cohort-program)
announced by the US administration, which aim in sequencing of at least 1 million Amer-
icans.

∗Corresponding author: tgambin@ii.pw.edu.pl

2



The early attempts of applying big data technologies to interactive analyses of se-
quencing datasets were focused on providing the end user with an API (Application
Programming Interface) in Pig [15] or Scala [16] languages and integration with the exit-
ing bioinformatics file formats using middleware libraries like Hadoop-BAM [17]. Those
approaches while very flexible, but impose imperative programming paradigm which as-
sume that the end user explicitly declares query execution plans. This is not suitable
for many researchers and data scientists who are not experts in distributed computing
programming at the same time.

Recently, several emerging technologies such as big data query engines offering SQL
(Structured Query Language) interfaces like Apache Impala (http://impala.io/), Apache
SparkSQL (https://spark.apache.org/), Presto (https://prestodb.io/), Apache Drill
(https://drill.apache.org/) made it possible to adapt declarative paradigms of pro-
gramming to analysing very large datasets. Finally, big data multi-dimensional analyt-
ics cube solutions such as Apache Kylin (http://kylin.apache.org/) can significantly
speed up SQL queries by storing already pre-aggregated results in a fast noSQL database
(e.g. Apache HBase).

Efficient ad hoc data analysis has been already for years a main goal of OLAP (On-
line Analytical Processing) solutions design based upon data warehouses. In the case
of genomic OLAP systems, the end-users are clinicians and medical researchers. Both
groups have different needs and expectations towards data analysis, still those are not
mutually exclusive. On the clinical level it is important to find knowledge about variants
in well-known genes and to compare the variant information of newly sequenced patients
against a larger knowledge base. Here the ad hoc question may have the form e.g. ”tell
me what diseases and phenotypes may have a patient having a specific set of variants”.
On the research side, the queries are focused on unsupervised searches that combine sets
of variants, sets of genomic intervals and phenotypic information. This is often about
getting the estimates of specific measures of aggregates, e.g. ”tell me which phenotype
has its related genes with an over-represented amount of variants”.

Current solutions for analyzing sequencing data using SQL and storing genomic vari-
ant information can be divided into two categories. First group of tools tries to take
advantage of classic single-node RDBMS (Relational Database Management System) like
MySQL [18, 19] or newer analytical with column-oriented store like MonetDB [20]. Those
solutions are able to provide flexibility and very good ANSI SQL conformance and rea-
sonable performance ([21] while working on datasets that are already pre-aggregated (e.g.
using Apache Pig in case of [19]) or limited in size (500MB reported by [20]) . On the
other hand, they do not offer horizontal scalability, efficiently compressed store and high
availability features out of the box.

The other group of prototypes focuses on providing distributed and scalable bioinfor-
matics file formats equivalent to well known ones such as Binary Alignment Map (BAM)

3



or Variant Calling Format (VCF). The major example of such an approach is ADAM
(Avro Data Alignment Map) formats family [22] using Avro (https://avro.apache.
org/) data serialization and Parquet (https://parquet.apache.org/) columnar data
representation. These files can be processed using popular query engines like Apache
Impala, Apache Spark or Presto. Such a modular approach where storage is not tightly
connected to a specific computing framework opens up possibility of choosing freely both
a query engine and file format that provides the best performance.

The goal of this prototyping study is to provide hints on combining both approaches in
order to create scalable and flexible data warehouse infrastructures for genomic population-
scale studies at single sample and variant granularity. For this purposes, the benchmark-
ing suite consisting of data generator, data model and set of queries has been proposed.
The benchmarking results of this project are intended to point out the future directions of
work on genomic variant data warehouse biobanks. Such database study may be needed
in all the areas of application of genomic systems: research, medical and commercial.

1.2 Biomedical issues that require ad hoc variant data analysis

Accurate detection and interpretation of genomic variation obtained from NGS data
became the central issues in the personalized

:::::::::
precision

:
medicine and human genetics

research studies. To enable a comprehensive and efficient variant analysis the storage
and query engines should allow to run a wide range of ad hoc queries providing the
answer to the most relevant biomedical questions.

Variant prioritization Although many methods have been proposed to evaluate
variant pathogenicity [23], the allele frequency measured in control populations remains
as one of the best variant effect predictors [24]. Most of the disease-causing variants
are absent or rarely observed in general population but their allele frequency may vary
among ethnic groups. Therefore, it is important to distinguish population-specific poly-
morphisms (likely benign) from real pathogenic variants that are rare enough in every
sub-population represented in the control data.

Publicly available databases (1000genomes, ESP, ExAC) report variant frequencies
for a small set of pre-defined ethnic groups (e.g. Europeans, Africans, Asians). Still,
no information about variant frequencies in smaller sub-populations (e.g. on the coun-
try/state/county level) can be found in them. There are many reasons of not reporting
this potentially useful data. First, a detailed information about origin of samples included
in these studies was not always collected or was not available. Second, the number of
individuals in other sub-populations was too small so reporting allele frequency was not
justified. Finally, storing allele frequency in the VCF file for every possible level of gran-
ularity of population structure would become impractical.

It can be expected that first two issues will be resolved in the near future when more

4



good quality data sets will become available. Still, the pre-computing, updating and
storing of such high dimensional allele frequency information will remain a challenge.
While testing the prototype, the main aspect taken into account was the performance of
our variant data warehouse in calculating variants’ allele frequencies for various subset of
samples. In particular, allele frequencies have been computed for each of 4 major ethnic
groups and for each of 181 countries represented in our simulated data set.

Masking genomic regions with excess of rare variants Disease-causing variants
are not uniformly distributed across the genome [5]. They are often clustered in certain
parts of the gene, such as selected exons or protein domains, as those functional element of
the genome are more likely to be protein-coding. These regions are usually characterized
by a depletion of rare variants in control databases [25, 26]. Analogously, an excess of
rare variants indicates tolerant, less critical regions in which we

:::
one

:
should not expect

disease-causing mutations. Filtering variants located within these commonly mutated
regions reduces the number candidates and therefore can improve the final interpretation
[27, 28].

The focus of the benchmarking was the ability of the data warehouse to compute
the cumulative frequencies of rare, predicted deleterious variants in different types of
genomic regions such as exons, genes and cytogenetic bands. This information can be
further utilized to determine genomic intervals of higher then expected mutational rate
[29]. It is worth noting that the same calculations can be further repeated for any subset
of samples, e.g. individuals from selected ethnic groups or countries.

Association tests Multiple statistical methods have been developed to support novel
disease gene discoveries in large case-control analysis of sequencing data [10, 11, 12,
13, 14]. Classical GWAS approaches aim at identifying single variants, for which allele
frequency differ significantly between cases and controls. The main drawback of these
methods is a lack of power while dealing with very rare variants [30]. To overcome this
issue, various aggregation tests have been proposed. They analyze the cumulative effects
of multiple variants in a gene or a genomic region, either by collapsing information from
multiple variants into single score (Burden test [10, 11, 12]) or evaluating aggregated
score test statistics of individual variants, such as C-alpha[13] or SKAT[14]).

An important issue for aggregated tests is selecting an appropriate subset of variants
to be tested for association [30]. The allele frequency cutoff is usually determined using
the information on disease prevalence and expected inheritance model. In order to refine
further the subset of variants one can use prediction scores to select the most damaging
mutations. However, despite many existing prediction algorithms and a variety of filtering
strategies there is no single solution that fits to all studies.

Some types of queries have been run to assess the efficiency of our variant warehouse
in performing customized

::::::::::::
customised

:
region-based association tests. In particular, the

search was done for genes or exons enriched for rare deleterious variants in selected disease

5



populations.
Investigating the depth of coverage Coverage statistics obtained from a large

population of samples can be used in many ways, including prediction of Copy Number
Variants (CNVs) [31, 32] and detection of regions of poor or variable coverage. CNVs are
of great importance in clinical investigation because they often allow to explain patient’s
phenotype. On the other hand, an information about poorly covered regions can be used
to improve the results of association studies [33].

Interactive variant browsing To achieve the clinical applicability of genomic vari-
ant knowledge and for real bench-to-bedside impact of personalised medicine, it is nec-
essary to provide clinicians and medical researchers with user-friendly tools for flexible
querying and real-time browsing variant information for a currently investigated patient.
Tasks such as phenotypic or ontology-based searches, comparing large knowledge bases
with local sequenced biobanks of patients or finding associations between drug response
and variants must certainly have the basis in the efficient ad-hoc variant database queries.
Having efficient querying for large variant databases with convenient data management
interfaces may convince clinicians to use more of the accumulated genomic knowledge
in their daily practice and will have in consequence beneficial influence on patients and
therapies.

1.3 State-of-the-art techniques for distributed data processing

To construct the benchmarks for genomic variant database it is necessary to systematise
the current technologies, formats and software tools used in this area. Those relevant
aspects are listed with short descriptions below.

1.3.1 File formats and storage engines

Apache ORC (https://orc.apache.org) and Apache Parquet are the most ad-
vanced type-aware columnar file formats used in the Hadoop Ecosystem stored using
Hadoop File System (HDFS). Both exhibit many design similarities such as pluggable
data compression mechanism (e.g. Snappy, zlib

::::::::::
gzip/Zlib

:
or LZO), data type specific

encoders and support for nested data structures. Apache ORC and Parquet are also
widely adopted and many distributed query engines provide support for both, including
Apache Spark, Apache Hive and Presto. ORC introduces also a lightweight indexing
that enables skipping of complete blocks of rows that do not satisfy the query predicates.
However, there has been no consensus yet on whether one of them is superior in terms
of performance. Recent studies ([34]) suggest that ORC might be significantly faster (ca.
1.3-5.8x). Apache Kudu ([35]) is a novel open source storage engine for structured
data which supports low-latency random access together with efficient analytical access
patterns. It can be run in parallel with the existing HDFS installation.

6



1.3.2 Query engines

Among the modern query engines the differentiating factors are e.g. query performance,
memory requirements, compatibility or application programming interfaces. In order to
choose a subset of engines to be tested with the benchmark data the list of requirements
has been prepared:

• ANSI SQL or its dialect as a querying language,

• ODBC/JDBC availability provides interoperability with analytical tools like R,
visualization and reporting solutions,

• I/O operations with HDFS file system,

• support for both popular columnar storage: Apache ORC and Parquet,

• support for Apache YARN (Yet Another Resource Negotiator) to provide easy and
efficient resource sharing among different jobs running on a cluster the same time,

• support for Hive metastore to provide an abstraction layer over physical storage
model details,

• at least basic data access authorization.

The query engines that has
:::
Big

::::::
data

::::::
query

:::::::::
engines

::::
can

::::
be

::::::::
divided

:::::
into

:::::
four

:::::::
main

:::::::::::
categories.

::::::::::::::
Historically,

::::
the

::::::
first

:::::::
group

::::::::::::
introduced

:::
an

:::::::::::::::::
implementation

:::
of

::::::::::::::
MapReduce

::::::::::
paradigm

:::
for

:::::::::::
executing

:::::
SQL

::::::::
queries

:::::
and

::::::::
despite

::::
the

:::::
fact

:::::
that

::::::
offers

:::
in

::::::
many

::::::
cases

::::::
poor

:::::::::::::
performance

::
it

:::
is

:::::
still

::::::::
widely

:::::
used

:::::::::
because

:::
of

::::
its

::::::::::
maturity

:::::
and

::::::::::
stability.

::::::::::::::
DAG-based

:::::::::
category

:::::
that

:::
is

::
a
:::::::::

natural
::::::::::
successor

::::
of

::::
the

::::::::
legacy

:::::::::::::
MapReduce

::::::::::
approach

:::
is

:::::::::::
currently

::::::
under

:::::::
active

:::::::::::::
development

:::::
and

::::::
seems

:::
to

::::::::::
becoming

::::
the

::::::
most

:::::::::
popular

:::::::::::
nowadays.

:::::::::::
MPP-like

:::::::
engines

:::::
that

::::
has

:::
is

:::
its

::::::
origin

:::
in

::::::::::
dedicated

:::::::::::
analytical

:::::::::::
appliances

:::::
(e.g.

::::::::::
Netezza,

:::::::::::::
Greenplum,

:::::::::::
Teradata).

:::::
The

:::::
last

:::::::::
category

::::
are

::::::::
OLAP

::::::
cubes

::::::::::
solutions

:::::
that

::::::
store

::::::::::::::
precomputed

::::::::
results

:::::::::::::
(aggregates)

:::::
using

::::::::::::
distributed

::::::::
storage

:::::::::
systems.

:::::
The

:::::::
query

::::::::
engines

:::::
that

:::::
have been initially

evaluated as candidates for including in the benchmark are as follows.
:
:
:

Hive is a data warehouse software that enables querying and managing large datasets
in a distributed storage. It provides a metastore which can keep the information on
data specific parameters such as tables schema, file format or location of the files. Hive
can be operated with HiveQL, highly similar to ASCII

::::::
ANSI

:
SQL. There are various

execution engines where HiveQL queries can be run, such as MapReduce, Tez or Spark.

:::::::
Among

:::::::
those,

:::::::::::::
MapReduce

:::
is

::::
the

:::::
only

::::::::::
execution

::::::::
engine

:::::
that

::
is

:::::::::::
supported

::::
by

:::
all

:::::::::
Hadoop

:::::::::::::
distributions

::::
(i.e.

::::::::::::::
Hortonworks

:::::
and

:::::::::::
Claudera)

::::
and

::::::::::
therefore

:::::
only

::::
this

:::::::
engine

::::
was

::::::::::
included

::
in

::::
our

:::::::::::::
benchmark.

:

7



Hive on MapReduce Hive initially had used MapReduce as the execution engine.
MR introduced the paradigm [36] of writing distributed algorithms using two phases:
map and reduce. Hive transforms each query into multiple stages consisting of both
phases. In case of MapReduce each stage is run independently with sub-results persisted
which may lead to IO overhead.

Hive on Tez is intended to solve the problem of frequent I/O access as well as better
memory utilization. This is achieved by applying the idea of directed acyclic graphs
(DAG) as a key concept of execution architecture. Programs are embodied as a graph
where vertices represent the program logic and edges the data movement. Such approach
can be combined well with the model of Hive stages.

SparkSQL Apache Spark was designed to solve similar problems as Apache Tez and
also utilities the concept of DAG’s. It is based on the concept of Resilient Distributed
Datasets [37]. Spark apart from running directly Hive queries has its own optimizer
for HiveQL called Catalyst. It also puts great emphasis on memory usage with project
Tungsten that uses off-heap memory.

:::::::
Recent

:::::::
major

:::::::::::::
performance

::::::::::::::
improvement

::::::::::::
introduced

::
in

::::
the

:::::::
Spark

::::
2.x

::::::::
branch

:::::::
called

:::::::
whole

::::::
stage

:::::
code

::::::::::::
generation

:::::
was

::
a
:::::::
reason

::::
for

:::::::::::
including

::::
two

::::::
Spark

:::::::::
releases

:::::::::
(branch

::::::
1.6.x

:
-
:::::
still

:::::::
widely

::::::
used

:::::
and

:::::
2.1.x

:::::
the

:::::
most

:::::::
recent

:::::
one

:::
as

:::
of

::::::::
writing)

:::
in

::::
the

:::::::::::::::
benchmarking

::::::::::::
procedure.

:

Apache Presto is a project that was not aimed to replace MapReduce as such but to
improve interactive analytical queries on large datasets. It allows querying data sources
of different sizes from traditional RDBMS and distributed storages like HDFS. Presto
also aims to be ASCII

::::::
ANSI

:
SQL compliant, thus it does not support HiveQL. It is a

columnar execution engine initially developed at Facebook and supported by Teradata.
It can connect to Hive metastore with a connector.

Apache Drill is another columnar execution shipped by default with MapR Hadoop
distribution. It is unique features encompasses dynamic schema discovery (it can be
discovered during runtime) as well as runtime query code compilation. It can inter-operate
with Hive tables using a dedicated storage plugin.

Apache Impala similar to Presto puts a lot more effort on interactive analytics but
it has much more limited support for file formats and data sources. Most notably it lacks
support for Apache ORC file format. According to benchmark [34] it is however slower
than Presto with Apache ORC as storage in terms of wall time.

Apache Kylin is a distributed OLAP cube solution developed upon Hive and HBase
software. It provides a web user interface for both logical (dimensional modeling) and
physical (noSQL database table storage) design. Cuboids are computed using map-reduce
jobs and loaded into key-value store for fast retrieval. Queries that cannot be answered
using OLAP cube can be rerouted to Hive for runtime processing.

MonetDB is a parallel, analytical RDBMS with a columnar-oriented data store.
Over the years (project was initiated in the 1990s) it has introduced a great number

8



of unique features e.g. CPU-tuned query execution architecture, usage of CPU-caches,
run-time query optimizations just to name a few. An optional SAM/BAM module for
processing of sequence alignment data has been also released recently [20].

Query engines comparison query engine version ORC/Parquet JDBC/ODBC YARN
security Apache Hive 1.2.1 x x x xApache Spark 1.5.2 x x xx Presto 0.128 x x x/- x/-
Apache Drill 1.4 x x - x Apache Impala cdh5.3.9 -/x x x x Apache Kylin 1.2 x x x x
MonetDB 11.21.11 N/A xN/Ax

Table 1: Query engines comparison
query engine version ORC Parquet Kudu JDBC/ODBC YARN security
Apache Hive 1.1.0 + + - + + +
Apache Spark 1.6.3/2.1.0 + + +/- + + +
Presto 0.169 + + - + +/- +/-
Apache Impala 2.8.0 - + + + + +
Apache Kylin 1.2 + + - + + +
MonetDB 11.21.11 N/A N/A N/A + N/A +

1.3.3 Major limitations and challenges in the modern distributed database
systems

Although distributed computing research area has been developing rapidly for the last
2-3 years, still there are many challenges and limitations that designers and developers
of the system should to be aware and which need to be addressed in the future shapes of
the software:

• cost-based query optimization is still in its infancy when compared to classic RDBMS
– there is still very often a need for manual query tuning like table joins reordering
or queries reformulation,

• ANSI SQL conformance is often not yet fully satisfied, which leads to situations
where one query needs to be customized for each execution engine,

• many analytical/window functions are missing or named differently,

• distributed queries launch overheads – there is still a lot of effort put into providing
more interactive user experience as known from classic RDBMS,

• engines self-tuning features are also not yet implemented which very often results
in manual, time-consuming triaging and tuning on the level of engines as well as
single queries,

9



• in most of the cases the underlying storage layer is either optimized for fast se-
quential reads or random access patterns (Apache Kudu is an exception) and thus
sometimes data need to be duplicated.

2 METHODS

2.1 Base data model

In the area of data warehouses many design patterns have been proposed [38, 39] that
can be applied in the prototype with some adjustments, specific to the requirements
of distributed computing model and query engines. The main issue to be solved are
slow joins, which should be preferably replaced with filtering or map-joins. One of the
solutions it is to apply the star schema which can lead to executing map-joins when
the dimension table can fit into the memory. Figure 1 depicts the star schema of the
prototype. Dimension tables are also designed to enable implementation of hierarchies
for flexible adjusting of an area of interest, e.g. for the geography dimension one can
query over region → subregion → country or for genomic position gene → transcript →
exon → chromosome → position.

Figure 1: Proposed star schema of the genomic variant data warehouse, with central
fact table and tables modelling patients’ genotypes and phenotypes and genomic variant
annotation to RefSeq and Ensembl.

The fact table contains information retrieved from VCF files, such as chromosome,
position, reference and alternative alleles, depth of coverage, genotype and genotype
likelihoods. It also includes references to all the dimension tables.

The table dim geography represents world region of the patient divided into hierar-
chical areas. That type of patient information may be relevant in case of population
genomics studies From clinical perspective it may help to identify population specific
polymorphisms and trace the origin of causative variants, e.g. in epidemiology.

Both dim genomic position ensembl and dim genomic position refseq cover referential
genes and transcript annotations as available in RefSeq an Ensembl databases, respec-
tively. Each record corresponds to a single exon and contains information on its genomic

10



location and associated transcript’s data. Exons included in canonical transcripts are
indicated by ”iscanonical” flag. The transcripts with ”ismerged” flag, are results of over-
lapping all transcripts that map to the same HGNC gene symbol.

Table dim disease represents a set of OMIM diseases. This table models all the
phenotypic and disease information about the patient and sample that can be possibly
stored in a genomic data warehouse. This may be extended into a set of data tables,
including phenotype ontology and all the clinical parameters relevant for the diseases of
patients whose samples are stored. This is the most obvious direction of development of
the warehouse structure for practical applications.

The dim variant predictions contains variant information that is available in dbNSFP
database [40] with selected results from some of the major predictors available.

The full definitions of all the tables in the database schema can be found in the project
results repository (see Supplementary Information for details).

2.2 Data model optimizations

Base data model organized as a classic star schema is mainly suitable for running queries
that require the highest granularity of data but using only a small subset of rows from
the fact table. Queries that perform full-table scans over fact table in order to calcu-
late aggregated measures over e.g. geographical items or genomic regions can benefit
from being rewritten to be run over aggregation tables. It can be further optimized by
introducing aggregation tables that have been pre-joined with some of the most often
used dimensions. This can be particularly beneficial in the case of high or ultra-high
cardinality dimensions like dim genomic position or dim variant prediction. Last but not
least, the base data can be transformed into OLAP cubes storing all aggregates along
predefined query patterns for running fast slice and dice operations. To address all the
needs above, four levels of data storage have been introduced:

1. raw data of genotype calls (raw) – is a raw, not aggregated fact table with the
highest granularity and references to all the dimension tables,

2. aggregation tables level (aggr) – storing all e.g. variant counts aggregated by
country

:::::::::
countries,

::::::::
exons,

:::::::::
diseases,

:::::
and keeping references to all dimension tables,

3. aggregation and full denormalization level (aggr+denorm) – the aggregated fact
table with pre-joined dimension tables stored as one table,

4. OLAP cube with all aggregates pre-computed and stored in noSQL database (Kylin).

11



2.3 Construction of benchmarks

2.3.1 Cluster infrastructure overview

Hardware All the test have been run using a 6 node cluster (5 data/processing nodes
and 1 used as master and name node). Machines were equipped with 2xE5-2650 CPU
resulting in 16 cores/32 threads and 256GB of RAM. Each node had local 6 hard drives in
RAID0 (400GB of disk space) mode with peak throughput around 1.3GB/s of sequential
read speed. Network interconnect allowed stable transfer at around 200MB/s.

Software Hortonworks Data Platform (HDP) 2.3
:::::::::
Cloudera

::::::::
(CDH)

::::
5.8.2 distribution

were installed using custom Docker images based on Centos 6.6 with Hadoop 2.7.1, Hive
1.2.1

::::
with

:::::::::
Hadoop

:::::::
2.6.0,

:::::
Hive

::::::
1.1.0, HBase 1.1.1, Kudu 0.7.0

:::::
1.0.1

:
and Zookeeper 3.4.6

::
.5

:
as main software components. Apache Spark version were upgraded to 1.5.2 (instead

of 1.4.1 shipped with HDP). Docker 1.8.3 was used together with flannel () 0.5
:::::::::
Versions

::
of

::::::
other

:::::::::::::
components

:::::
are

:::::::::::::
summarized

:::
in

:::::::
Table

::
1.

:::::::::
Please,

::::::
note

:::::
that

:::
in

::::
the

::::::
text

:::::::
Spark

::
in

::::::::
version

::::
1.6.3 for providing virtual network between containers running on different

physical nodes.
:
is

:::::::::
referred

:::
to

:::
as

::::::
Spark

::
1
:::::
and

:::::::
Spark

::
in

::::::::
version

::::::
2.1.0

:::
as

::::::
Spark

:::
2.

:

2.3.2 Query engines

Three of general purpose query engines (

::::
The

::::::::::::
benchmark

:::::::::
measures

::::
the

::::::::::::::
performance

::
of

:::::
four

::::::::::::
distributed

::::::
query

::::::::
engines

:::::::::::
described

:::::::
above,

::::
i.e.

:
Apache Hive (on Tez

::::::::::::
MapReduce), Apache Spark , Presto) described above

have been used in all the tests. Apache Impalawas used to provide an access to Apache
Kudu storage engine. Apache Hive on MR has not been included because it is generally
slower than Hive on Tez and not suitable for running interactive analytical queries.

:::::::::
(versions

::::
1.x

::::
and

::::::
2.x),

::::::::
Presto,

::::
and

:::::::::
Apache

::::::::
Impala.

::::::
First

::::::
three

::::::::
engines

::::::
were

::::::
tested

:::::::
using

::::
two

:::::::::
different

::::
file

:::::::::
formats:

:::::::
ORC

:::::
and

:::::::::
Parquet.

:::::::::
Apache

:::::::::
Impala,

:::::::
which

:::::
does

:::::
not

:::::::::
support

::::::
ORC,

::::
was

:::::::
tested

:::
in

::::::::::::::
configuration

::::::
with

:::::::::
Parquet

::::
and

::::::::
Apache

::::::::
Kudu.

:

In addition, in the case of queries against aggregation tables, MonetDB database was
used as a a baseline to compare performance of distributed query engines versus one
of the fastest parallel, columnar but still single-node relational databases. Distributed
cube OLAP solution – Apache Kylin has been also reviewed to indicate a possibility of
reducing query times even more, with the aim of execution time below a single second.

2.3.3 Data warehouse physical data model details

In all the tests queried tables were stored in either ORC or Parquet format with gzip
compression and registered as Hive tables in Hive Metastore.

Table 2 presents the details of the physical tables stored in Hive and MonetDB.
Physical data model properties. Sizes in GB. TablerowscolumnsORC-zlib size PQ-zlib

12



size Kudu-zlib sizeMonetDB size fact 4827005561 14 45.7 36.6 76.3 69.6* fact agg counts
230380448 18 3.1 3.2 8.7 25.7 fact agg counts dims 230380448 67 10.9 10.1 34.8 72.1
dim gen pos ens 1519361 12 0.0097 0.0122 0.366 0.064 dim gen pos rs 725811 12 0.0064
0.007 - 0.041 dim geography 249 7 0.000004 0.000004 0.000012 0.007 dim disease 7569 3
0.000104 0.000113 0.000348 0.003 dim variant predict 369006734 28 10.8 11.8 19.1 54.2

Table 2: Physical data model properties. Sizes in GB.
Table rows columns ORC-Zlib size PQ-Zlib size Kudu-Zlib size MonetDB size
fact 4827005513 14 24.9 21.7 76.3 69.6*
fact agg counts 230380448 20 3.1 3.2 8.7 25.7
fact agg counts dims 230380448 67 10.9 10.1 34.8 72.1
dim gen pos ens 1519361 12 0.0097 0.0122 0.366 0.064
dim gen pos rs 725811 12 0.0064 0.007 - 0.041
dim geography 249 7 0.000004 0.000004 0.000012 0.007
dim disease 7569 3 0.000104 0.000113 0.000348 0.003
dim variant predict 391271826 28 10.8 11.8 19.1 54.2

In the case of MonetDB only 1 ∗ 109 rows (approx. 1/5 of the dataset) have been
loaded to the fact table, while the rest of the tables (aggregation and dimension) were
the exact copies of those stored in Hive. It was because of the disk space constraints,
as MonetDB does not provide any data compression mechanism. It has been estimated
that the total size of fact and dimension tables would exceed 400GB that was attached
as local storage.

The first level (fact) table enables running most general queries even for single samples.
The next two levels (2-3) (fact agg counts and fact agg counts

::::::
dims are pre-aggregated by

all dimension’s foreign keys. Levels 1-3 can be queried using different computing engines
(Hive on Tez

::::::::::::
MapReduce, SparkSQL, Presto) and the data is stored as one of columnar

storage such as Apache ORC or Parquet, whereas the 4th level is implemented using
Apache Kylin which with HBase as a storage.

The size of the Kylin OLAP cube was 47.6GB and it took approximately 6.5h to build
it. In case of Apache Kudu there was a need to add an artificial primary key in case of
aggregated tables (level 2,3).

2.3.4 Formulation of queries and testing

The performance of the variant, data warehouse has been tested using 5
:::
12 types of queries

that correspond to biomedical issues discussed in the previous section. The detailed
description of queries and engine-specific versions of SQLs are available in the results
repository.

• Q1: Allele frequencies – breakdown by geographical region. For every
variant the set of population specific allele frequencies corresponding to 4 conti-
nents (subquery A) or 181 countries (subquery B) is calculated. This type of data

13



can be used to identify and flag common polymorphisms observed only in selected
populations.

• Q2: Cumulative frequencies per genomic interval. The number of distinct
rare (allele frequency < 1%), deleterious (predicted as damaging by FATHMM)
variants and their cumulative allele frequencies are computed for every single tran-
script (subquery A) or exon (subquery B) in the human genome. This information
may help to detect the commonly mutated regions that could be masked in the
clinical investigation of patients variant data.

• Q3: Enrichment of variants in disease population. The aggregated variant
counts are computed for selected subpopulation of disease patients for every tran-
script (subquery A) or exon (subquery B) in the human genome. These queries
provide substrates for aggregation tests and can be easily used to identify genes or
exons with excess of damaging variants in disease population.

• Q4: Distribution of variant’s coverage across genomic intervals
:
. Minimum,

25-th percentile, median, 75-th percentile and maximum depth of coverage across all
samples is computed for every transcript (subquery A) or exon (subquery B) in the
human genome. These queries, allow to locate poorly or variably covered regions
that may be a cause of inflation of false positive values in association studies.

• Q5
:::::::::
Q5-Q12: Browsing individual’s variants

::::
Set

:::
of

:::::::::
queries

:::
on

:::::
the

:::::
fact

:::::::
table.

The
::
In

::::::::::
addition

:::
to

::::
the

::
8

:::::::::
complex

::::::::
queries

:::
(4

:::::::
query

::::::::::
families)

::::::::::
described

:::::::
above,

:::::
the

:::::::::::
benchmark

:::::::::
includes

::
a
::::
set

:::
of

::
8

::::::::
queries

:::::
that

::::
act

:::
on

::::
the

:::::
fact

::::::
table

::::::
only,

::::
i.e.

:::::::::
without

:::::
joins

:::::
with

:::::::::::
dimension

:::::::
tables.

:::
In

:::::::::::
particular,

::::
Q5

:::::::
returns

::::
the list of all variants from the

single sample and the given genomic regionare extracted. This simulates a typical
scenario in which clinician/analyst explore patient’s variants in the gene/region of
interest. It is important that such a simple genome range queries are processed
efficiently, possibly providing an answer in less than a few seconds.

:::::::::::
Remaining

:::::::
queries

::::
can

:::
be

:::::::
useful

:::
in

::::::
other

::::::
types

::
of

:::::::::::::
exploratory

::::::::
analysis

:::
or

:::
in

:
a
::::::::
process

:::
of

::::::::
quality

::::::::
control.

:::::::
These

::::::::
queries

::::::::
return:

:

–
:::
Q6

:
:
::::
the

::::::::
number

:::
of

:::::::::
variants’

:::::::::::::
occurrences

::::::::::::::
corresponding

:::
to

::::
the

:::::
same

:::::::::::::
substitution

:::::
type

:::::
(e.g.

::
C

:::
>

::::
G)

::
in

::::
all

:::::::::
samples,

:

–
:::
Q7

:
:
::::
the

:::::::::
number

::
of

:::::::::
distinct

:::::::::
variants

::::
per

:::::::::::::
chromosome

::::::::::
observed

::
in

:::
all

::::::::::
samples,

:

–
:::
Q8

:
:
::::
the

:::::::::
number

::
of

:::::::::
variants

::::
for

:::::::
which

:
a
::::::
ratio

:::
of

::::::::
variant

::
to

::::::
total

::::::
reads

:::::::::
exceeds

::
90

:::
%

:::
in

::::
the

::::::
given

:::::::::
sample,

–
:::
Q9

:
:
:::::

the
:::::
ratio

:::
of

::::::::::::::
heterozygous

:::
to

::::::::::::::
homozygous

:::::::::
variants

:::
on

:::
X

::::::::::::::
chromosome

:::
in

:::
the

::::::
given

:::::::::
sample,

:

14



–
:::::
Q10:

:::::
the

::::::::
number

:::
of

:::::::::
variants

::::
per

::::::::
sample

:::
for

::
a
::::::
given

::::::::::::::
chromosome,

:

–
:::::
Q11:

:::::
the

::::::::
number

:::
of

:::::::::
different

::::::
genes

::::::::::::
containing

:::::::::
variants

::::
per

::::::::
sample,

:

–
:::::
Q12:

:::::
the

::::::::
number

:::
of

:::::::::
variants

::::
per

:::::::::::::
chromosome

::::
for

::
a

::::::
given

::::::::
sample.

::

2.3.5 Test set properties and its generation

::::
The

::::::::
largest

:::::::::
publicly

::::::::::
available

::::::::
variant

:::::::::
datasets

::::::
(such

:::
as

::::::::
ExAC)

:::::::::
contain

:::::
data

::::::
from

::::::
more

:::::
than

:::::::
50,000

:::
of

::::::::::
samples.

::::::::::::::::
Unfortunately,

:::::::
ExAC

::::::
does

::::
not

:::::::::
provide

::::::::
sample

:::::
level

:::::::::::
genotype

:::::
data.

::::::::::::::::
Downloadable

::::::
VCFs

::::::::
contain

::::::::
variant

::::::
allele

::::::::::::
frequencies

:::::::
across

:::::::::
different

::::::::::::::
populations,

::::::::
however

:::
no

::::::::::
genotype

::::::
data

:::
for

:::::::::::
individual

:::::::::
samples

::::
are

::::::::::
reported.

::::
To

:::::::::
generate

:::::::::
dataset

:::::
that

:::
has

::::::::
similar

:::::::::::
properties

:::
to

::::
the

::::::
ExAC

:::::
one,

::
a
:::::
data

:::::::::::
simulator

::::
has

:::::
been

::::::::::::::
implemented

:::::
that

:::::
uses

::::
real

::::::::::::::::::::
population-specific

::::::
allele

::::::::::::
frequencies

::::::::::
extracted

::::::
from

:::::::
ExAC.

:

For the purpose of testing, an artificial SNV data set has been generated, simulating
50,000 whole exome sequences. To ensure the actual distribution of genomic variants in
geographical populations, the ethnic-specific allele frequencies available in ExAC database
have been used. This simulation procedure consists of 3 steps:

First, every sample is assigned to one of four ethnic groups, i.e. Europeans, Americans,
Asians or Africans. Then, samples within an ethnic group are associated with countries,
which are randomly selected with respect to relative population sizes.

Subsequently, variants are simulated based on information present in the dbNSFP [40]
including chromosomal position, reference/alternative alleles and allele frequencies from
ExAC. For every variant in dbNSFP the genotype has been selected with a probability
p(af) and corresponding to the proper ethnic group allele frequency:

p(af) =


1− 2 · af + ·af 2 for genotype 0/0
2 · af · (1− af) for genotype 0/1
af 2 for genotype 1/1

For every genotype generated in previous step the total depth and allelic depth of
coverage have been simulated. For a given position of the variantwe fixed

:
,
:
the average

value of the total number of reads
::::
has

::::::
been

::::::
fixed,

:
using information reported in ExAC

about a mean depth of coverage at this location.

2.3.6 Test procedure
:::::::::::::
automation

SQL-dialect specific version of all the queries have been run using all query engines and
in case of aggregated (storage level 2), aggregated and denormalized (storage level 3) also
using MonetDB. Queries on storage level 3 have been also tested using the Kylin cube.

::
To

::::::::
execute

::::::::
queries

::::::
using

:::::::::
selected

::::::::
engines

::::
and

::::::::
storage

:::::::::
formats

::::::
there

::::
has

:::::
been

::::::::::
prepared

:
a
::::::::::::::
parametrized

::::::::::::::
YAML-based

::::::::::::::
configuration

::::
file

:::
for

::::::
each

::::::
query

:::::
(see https://github.com/

15



ZSI-Bio/variantsdwh
:::
for

:::::::::
details).

::::::
This

:::::::::
enabled

:::
us

:::
to

:::::::::::
automate

::::
the

::::::::
process

:::
of

::::::::
testing

::::::::
different

:::::::::::::::
combinations

:::
of

:::::::
query

:::::::::
engines

:::::
and

:::::::::
storage

::::::::::
formats.

::::::::::::
Proposed

:::::::::::::
automation

:::::::::::
framework

:::::::::
consists

:::
of

:::::::
Scala

:::::::
utility

::::::
that

::::::
reads

:::::::::::::::
parametrized

::::::
SQL

:::::::
query

:::
in

::
a
:::::::::

YAML

:::
file

:::::::::::
(together

:::::
with

::::::::::::
additional

::::::::::
metadata

::::::::::::::
information)

:::::
and

::::::::::
executes

:::
it

::::::
using

::
a
::::::::::

selected

::::::::::
execution

:::::::
engine

:::::::
(using

::
a

:::::::
JDBC

::::::::::
interface)

::::::::
against

:::::::
tables

:::::::
stored

:::
in

::
a

:::::::
desired

::::
file

::::::::
format

::
a

:::::::::
specified

::::::::
number

:::
of

:::::::
times.

:::
In

::::::
order

:::
to

::::::
even

::::::::
further

::::::::::
automate

::::
the

:::::::::::::::
benchmarking

:::::::::
process

::::::::::
additional

::::::
shell

:::::::
scripts

:::::
were

:::::::::::
developed

:::::
that

:::::::::
execute

::::
end

:::
to

::::
end

::::::::::
scenario,

::::
e.g.

::::::
start

:::::::
Spark

:
1
:::::::
Thrift

::::::::
server,

::::
run

::::::::
queries,

:::::
stop

:::
it,

:::::
and

:::::::
repeat

::::
the

::::::
same

::::::
steps

:::::
with

:::::::
Spark

::
2.

:::::::::::::
Framework

::
is

:::::
also

:::::::::
shipped

:::::
with

::::::
tools

::::::
that

::::
can

::::::::::
generate

:::::
the

:::::::::
physical

::::::::
model,

::::::::::
populate

::::::::::::
dimension

::::::
tables

:::::
and

:::::::::
generate

:::::
fact

::::::
table

:::
of

::
a
:::::::

given
:::::
size.

:::::::
Data

:::::::::
analyses

:::::
and

::::::::::::::
visualisation

:::::
step

:::
is

:::::::::::::
implemented

:::
as

::
a

:::
set

:::
of

::
R

::::::::
scripts

:::::
that

::::::::
process

:::::
CSV

::::::::
output

::
of

::::
the

::::::::::::
benchmark

:::::::::::::
procedures.

In the case of Hive tables stored as ORC or Parquet format gzip
:::::
/Zlib

:
compression

has been used in both cases. Each query from the test set has been run several times and
average value has been calculated. Disk buffers at operating system level were purged
before each query launch.

3 RESULTS AND DISCUSSION

After performing the queries with the selection of database and query engines, a number
of conclusions and recommendations can be formulated. The numeric results of the
benchmarking tests can be found in the table

3.1 File formats and storage engines

Testing both ORC and Parquet file formats revealed that there exist serious differences
in their implementations between the computing engines. The same query run using a
different file format can slow down even by factor of approximately 4x (Q1), but usually
the difference is ca. 1.5-2x (see Table 3). It can be observed that Apache Hive performs
better using ORC than Parquetfor larger tables whereas poorer for smaller aggregation
tables. Apache Spark almost always favours Parquet format, so does Presto

:::::
with

::::::
ORC

but here the difference seems to be less obvious
:::::
(with

::::
the

:::::::::::
exception

:::
of

::::::::
queries

:::::::::
without

::::
join

::::::::::::
operations

:::::::
where

::::
the

:::::::::::
difference

::::
can

::::
be

::::::::::::
significant). The difference in size of the

compressed files (using gzip
:::::
/Zlib algorithm) were comparable, varied depending on a table

but in the case of the fact table reached the maximum value of ca. 20%. In general, using
Parquet over ORC file format is recommended for running analytical queries. When both
sequential reads and random access patterns are of interest, then Apache Kudu storage
engine seems to be the best option available. It outperforms ORC and Parquet formats
by an order of magnitude in case of genome range queries (Q5) leveraging a primary

16



Q1A Q1B Q2A Q2B Q3A Q3B Q4A Q4B

0

500

1000

1500

0

200

400

600

0

100

200

300

400

500

ra
w

a
g
g
r

a
g
g
r_

d
e
n
o
rm

H
IV

E
S

P
A

R
K

1
S

P
A

R
K

2
P

R
E

S
T

O
IM

P
A

L
A

M
o
n
e
tD

B
K

y
lin

H
IV

E
S

P
A

R
K

1
S

P
A

R
K

2
P

R
E

S
T

O
IM

P
A

L
A

M
o
n
e
tD

B
K

y
lin

H
IV

E
S

P
A

R
K

1
S

P
A

R
K

2
P

R
E

S
T

O
IM

P
A

L
A

M
o
n
e
tD

B
K

y
lin

H
IV

E
S

P
A

R
K

1
S

P
A

R
K

2
P

R
E

S
T

O
IM

P
A

L
A

M
o
n
e
tD

B
K

y
lin

H
IV

E
S

P
A

R
K

1
S

P
A

R
K

2
P

R
E

S
T

O
IM

P
A

L
A

M
o
n
e
tD

B
K

y
lin

H
IV

E
S

P
A

R
K

1
S

P
A

R
K

2
P

R
E

S
T

O
IM

P
A

L
A

M
o
n
e
tD

B
K

y
lin

H
IV

E
S

P
A

R
K

1
S

P
A

R
K

2
P

R
E

S
T

O
IM

P
A

L
A

M
o
n
e
tD

B
K

y
lin

H
IV

E
S

P
A

R
K

1
S

P
A

R
K

2
P

R
E

S
T

O
IM

P
A

L
A

M
o
n
e
tD

B
K

y
lin

Engine

M
e
a
n
 t
im

e
 [
s
]

Format

orc

parquet

kudu

hfile

custom

Figure 2: Relative performance (execution time) of
:::::::::::
Execution

::::::
times

::::
for

:
all the query

engines and file formats for
::::
the queries Q1-Q4 over

:::::
raw,

:
aggregation and denormalized

tables with MonetDB as a baseline.
:::
For

::
a
:::::::

given
::::::::::::::
configuration

::::::::
(query

::::::::
engine

:::::
and

::::
file

::::::::
format)

:::::
each

:::::::
query

:::::
was

:::::::::
executed

:::
3

:::
to

::
5

:::::::
times.

::::::::::
Different

:::::::
colors

::::::
were

:::::
used

:::
to

::::::
show

:::::
the

::::::::
average

::::::::::
execution

:::::::
times

:::
for

::::::::::
different

::::
file

:::::::::
formats.

:::
In

:::::::::::
addition,

::::::
lower

::::
and

:::::::
upper

:::::::::
bounds

::
of

::::::
error

:::::
bars

:::::::::
indicate

::::
the

::::::::::
minimum

:::::
and

:::::::::::
maximum

::::::
query

:::::::::::
execution

::::::
time,

:::::::::::::
respectively.

17



Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

0

50

100

ra
w

H
IV

E
S

P
A

R
K

1
S

P
A

R
K

2
P

R
E

S
T

O
IM

P
A

L
A

H
IV

E
S

P
A

R
K

1
S

P
A

R
K

2
P

R
E

S
T

O
IM

P
A

L
A

H
IV

E
S

P
A

R
K

1
S

P
A

R
K

2
P

R
E

S
T

O
IM

P
A

L
A

H
IV

E
S

P
A

R
K

1
S

P
A

R
K

2
P

R
E

S
T

O
IM

P
A

L
A

H
IV

E
S

P
A

R
K

1
S

P
A

R
K

2
P

R
E

S
T

O
IM

P
A

L
A

H
IV

E
S

P
A

R
K

1
S

P
A

R
K

2
P

R
E

S
T

O
IM

P
A

L
A

H
IV

E
S

P
A

R
K

1
S

P
A

R
K

2
P

R
E

S
T

O
IM

P
A

L
A

H
IV

E
S

P
A

R
K

1
S

P
A

R
K

2
P

R
E

S
T

O
IM

P
A

L
A

Engine

M
e

a
n

 t
im

e
 [

s
]

Format

orc

parquet

kudu

Figure 3: Panel A,B: Distribution of execution
::::::::::
Execution

:
times for

:::
all

::::
the

:
query engines

and file formats (
:::
for

:
queries Q1-Q4

::::::::
Q5-Q12.

::::::
For

::
a
:::::::
given

::::::::::::::
configuration

::::::::
(query

::::::::
engine

::::
and

::::
file

::::::::
format) ; Panel C: Execution

::::
each

:::::::
query

:::::
was

::::::::::
executed

:::::::::
between

::
3
:::
to

::
5
::::::::

times.
:::::::::
Different

:::::::
colors

:::::
were

::::::
used

::
to

::::::
show

::::
the

:::::::::
average

::::::::::
execution

:
times for

:::::::::
different

:::
file

::::::::::
formats.

::
In

::::::::::
addition,

::::::
lower

:::::
and

:::::::
upper

::::::::
bounds

:::
of

:::::
error

:::::
bars

:::::::::
indicate

::::
the

:::::::::::
minimum

:::::
and

:::::::::::
maximum

query Q5 (variant browsing)
::::::::::
execution

::::::
time,

:::::::::::::
respectively.

key. Of note, Apache Kudu does not use HDFS for data storage and currently it is fully
supported only by Impala query engine.

In summary, Parquet-based file formats for storing genomic information (as e.g. in
ADAM) are a good choice for running analytical queries

:::::::::
complex

:::::::::::
analytical

:::::::
queries

::::::
(e.g.

::::::::
Q1-Q4)

:
whereas are not

:::::
really

:
suitable for fast random access patterns, e.g. interactive

variants browsing for a given sample identifier and genomic position ranges
:::::
(Q5).

::::::::
When

:::::::::
choosing

::::
this

::::
file

::::::::
format

::::::::
Apache

:::::::
Spark

::
2

:::::::
seems

::
to

:::::
best

:::::::
query

:::::::
engine

:::::
that

:::
in

::::::
most

:::
of

::::
the

:::::
cases

:::::::::::::
outperforms

::::::
both

:::::::::
Apache

:::::::
Spark

::
1

::::
and

:::::::::
Apache

:::::::::
Impala.

:::::
The

::::::
other

::::::::
option

:::::
that

:::
is

:::::::::
currently

:::::::
worth

::::::::::::
considering

::
is
::::::::::::::
combination

::
of

::::::
ORC

::::
file

::::::::
format

:::::
with

:::::::
Presto

:::::::
query

::::::::
engine.

::
In

::::::
most

:::
of

::::
the

::::::
cases

::
it
:::
is

:::::::
slower

:::
in

:::::
case

:::
of

::::
the

::::::::
queries

:::
on

:::::
raw

:::::
data

::::::::::
requiring

::::::
joins

::::::
with

::::::::::
dimension

:::::::
tables

::::
but

:::
on

::::
the

::::::
other

::::::
hand

::
is

::::::
more

::::::::::::
performant

::
in

:::::::
single

:::::
table

:::::
scan

::::::::::::
operations

::::
and

:::::
data

::::::::::
browsing.

:::::::::
Neither

::
of

::::::
these

::::::::::::::
combinations

::
of

:::::::
query

:::::::::::
engine/file

:::::::
format

:::::
can

:::::::::
compete

:::::
with

::::::::
Apache

:::::::::::::::
Impala/Kudu

:::::::::::::::
configuration

::
in

:::::::
terms

:::
of

:::::
fast

:::::
data

::::::::::
browsing

::::::
that

::::
can

::::::
offer

:::::::::::
sub-second

:::::::::::
responses

::
in

::::::
most

:::
of

::::
the

::::::
cases.

3.2 Query engines

None of the evaluated computing engines was an obvious winner in all the queries and
storage levels (see Figure ?? andFigure ??

::::::::
Figures

::
2

::::
and

::
3
:::::
and

::::::
Table

::
3). The results can

18



be summarized as follows:

• Presto is more suitable
:
a
::::::::
perfect

:::::::
choice

:
for simpler queries (with fewer or no joins)

or smaller tables (e.g. aggregated and denormalized), on the other hand it is by
no means

::::
also suitable for complex queries with many joins , as it failed or timed

out when running test queries on highest granularity fact table
:::
but

:::
is

:::::::
slower

::::::
than

::::::::
Apache

::::::
Spark

::
2,

• Apache Tez
:::::
Hive

::::::::::::::
(MapReduce)

:
is particularly good at complex queries with joins

run on large fact tables , only Apache Spark could compete with it in a few cases.
Still it

::::
but

::::
still

::::::::
slower

:::::
than

::::::
other

:::::::::::::
DAG-based

::::
and

:::::::::::
MPP-like

::::::::::
solutions.

:::
It

:
does not

excel at interactive, simpler queries when it always was slower
::::
and

::::
the

:::::::::::
difference

:::::
even

:::::
more

::::::::
visible,

• Apache Spark showed the greatest variability in execution times but it
:
2
:
seems to

be most general purpose tool in the study. It is suitable for both heavy processing
(although in many cases slower than Apache Tez) and comparable to Presto when
interactivity is of importance.

:::
A

::::::
clear

::::::::::::
performace

::::::
boost

::::::
when

:::::::::::
compared

::
to

:::::::::
Apache

::::::
Spark

::
1
:::::
was

::::::::::
observed

:
-
:::
in

::::::::
almost

:::
all

::::
the

:::::
test

::::::
cases

:::
it

::::
was

:::::::
faster

:::::
and

:::
in

::::::
some

::::
the

::::::::::
difference

::::
was

::::::
even

:::::
5-6x,

• Apache Kylin whereas is not as flexible as fully-fledged query engines with properly
designed OLAP cube can be truly interactive tool with sub-second response times,

• all of the query engines show superior performance over MonetDB in case of run-
ning star-queries over the aggregation tables with an average speedup approx. 3-7x,
in case of queries against aggregated and denormalized tables execution times con-
verged, in a few queries MonetDB proved to be equally fast as Kylin. MonetDB
seems to exceptionally well deal with queries run against a single table.

• Apache Impala was the only query engine that was used to access data stored in
Apache Kudu. It showed one of the lowest variation of execution times (in case
both Parquet and Kudu) while still being comparable to other engines in case of
analytical queries (Q1-Q4). When used together with Apache Kudu, it was the
only

::::
best

:
combination capable of answering genome range queries (Q5) in a truly

interactive way (<1s).
:
It

:::::
also

::::::::
offered

:::::::::::::
comparable

::::::::::
execution

:::::::
times

:::
to

::::
the

:::::::::
Apache

::::::
Spark

::
2

::::
and

::::::::
Presto

:::
in

:::::
case

::
of

:::::::
single

::::::
table

::::::::
queries

::
in

:::::::
many

::::::
cases.

:

Queries execution times for Apache Hive, Apache Spark, Presto, Kudu, MonetDB
and Apache Kylin Level MonetDB sKylin sFormat ORC Parquet ORC Parquet ORC
Parquet Parquet Kudu Custom HFile raw 376 1537 2400 >1h 624 576 1093 678 – –aggr
63 58 59 44 21 13 47 90 207 –aggr+denorm 63 54 41 44 21 13 52 90 182 0.32raw 732 894

19



Table 3: Queries average execution times for Apache Hive, Apache Spark, Presto, Impala,
MonetDB and Apache Kylin

Query Level Hive on MR [s] Presto[s] Spark 1[s] Spark 2[s] Impala [s] MonetDB [s] Kylin [s]
Format ORC Parquet ORC Parquet ORC Parquet ORC Parquet Parquet Kudu Custom HFile

Q1A

raw 648 1548 283 314 572 434 330 280 814 1523 – –
aggr 216 212 25 28 55 35 27 23 85 54 207 –
aggr+denorm 123 315 11 19 24 21 15 11 35 83 182 0.32

Q1B

raw 710 1603 270 316 230 145 335 219 685 1580 – –
aggr 193 195 24 28 39 27 25 22 84 56 44 –
aggr+denorm 141 367 13 19 21 20 17 14 49 90 143 0.85

Q2A

raw 386 543 103 172 613 478 143 81 157 976 – –
aggr 285 300 34 29 138 79 33 28 51 82 263 –
aggr+denorm 53 71 1.81 6.74 16 14 12 7.16 5.82 8.2 18 1.7

Q2B

raw failed failed 271 320 721 492 144 79 180 1357 – –
aggr 542 680 31 33 144 89 39 27 65 80 321 –
aggr+denorm 51 67 2.24 7.49 18 8.59 12 6.37 6.91 8.64 17 2.5

Q3A

raw 423 577 118 196 649 552 139 76 221 1082 – –
aggr 294 300 35 36 154 94 44 32 85 82 549 –
aggr+denorm 45 60 1.01 7.25 20 9.62 9.67 5.94 5.43 18 0.5 13

Q3B

raw 422 573 113 193 655 427 136 75 233 1074 – –
aggr 292 299 39 36 141 82 48 39 89 82 549 –
aggr+denorm 44 62 1.18 8.63 21 11 11 5.47 6.3 11 0.3 14

Q4A

raw 171 207 33 66 78 34 47 21 59 516 – –
aggr 174 170 12 13 26 17 21 15 25 20 146 –
aggr+denorm 123 142 3.66 6.36 16 14 9.51 9.72 12 18 91 0.26

Q4B

raw 160 200 29 67 79 32 42 15 20 524 – –
aggr 155 164 11 14 23 16 12 12 3.81 20 157 –
aggr+denorm 56 70 0.71 4.58 12 7.19 5.1 2.6 4.35 24 3 0.91

Q5 raw 64 95 1.01 37 111 26 42 8.49 16 0.33 – –
Q6 raw 23 49 0.45 24 67 13 31 3.05 11 18 – –
Q7 raw 73 87 25 55 98 37 49 15 71 308 – –
Q8 raw 28 76 5 39 66 20 38 3.55 16 0.36 – –
Q9 raw 75 101 0.69 49 107 22 48 4.61 6.26 0.46 – –
Q10 raw 58 84 3.86 41 85 19 47 8.82 21 58 – –
Q11 raw 60 87 3.58 30 59 17 37 8.13 18 27 – –
Q12 raw 77 100 4.47 25 29 14 28 3 8.78 0.27 – –

>1h >1h 236 213 895 505 – –aggr 80 57 81 66 18 13 50 92 44 –aggr+denorm 64 61 43
43 21 14 58 78 143 0.85raw 201 332 >1h >1h 548 473 187 532 – –aggr 119 122 59 36
250 261 44 78 263 –aggr+denorm 47 36 10 8 15 9 6 20 18 1.7raw 237 459 >1h >1h 840
720 247 798 – –aggr 139 142 157 150 292 251 58 100 321 –aggr+denorm 58 35 12 9 15 9
6 19 17 2.5raw 217 359 >1h >1h 509 446 216 600 – –aggr 134 157 118 146 261 234 73
113 549 –aggr+denorm 34 21 62 19 14 9 4 18 0.5 13raw 216 359 >1h >1h 900 720 215
603 – –aggr 140 173 120 113 264 225 74 115 549 –aggr+denorm 49 33 15 9 17 8 4 18 0.3
14raw 110 157 132 122 80 44 111 305 – –aggr 69 70 69 47 20 21 26 37 146 –aggr+denorm
100 61 42 43 20 17 23 26 91 0.26raw 96 115 81 79 81 39 110 400 – –aggr 52 53 43 12 18
14 26 36 157 –aggr+denorm 33 28 7 6 26 8 3 29 3 0.91Q5 raw 950 1244 7 35 103 88 19
0.9 – –

3.3
:::::::
Data

:::::::::::::::::::
compression

::::
The

::::::::
impact

::
of

::::::
data

:::::::::::::
compression

:::
on

::::::
table

::::
size

:::::
and

::::::
query

:::::::::::
execution

::::::
times

::::
has

::::::
been

:::::::
tested

:::
for

::::
two

:::::
best

::::::::::::
performing

:::::::::::::::
configuration,

::::
i.e.

:::::::
Presto

::::::
with

::::::
ORC

::::
and

:::::::
Spark

::
2

:::::
with

::::::::::
Parquet.

:

20



Presto_ORC Spark2_Parquet

0

25

50

75

None Snappy Zlib None Snappy Zlib

Compression

S
iz

e
 [

G
B

]

Compression None Snappy Zlib

A

PRESTO_orc SPARK2_parquet

0

5

10

15

20

25

N
o
n
e

S
n
a
p
p
y

Z
lib

N
o
n
e

S
n
a
p
p
y

Z
lib

Compression

M
e

a
n

 t
im

e
 [

s
]

Query
Q10

Q11

Q12

Q5

Q6

Q7

Q8

Q9

B

Figure 4:
:::::::
Impact

:::
of

:::::::::::::
compression

:::
on

::::
fact

::::::
table

::::
size

::::
and

::::::::::
execution

::::::
times

::::
for

:::::::
queries

::::::::::
Q5-Q12.

21



3.4 Data compression

Using columnar storage together with gzip
:::::
/Zlib

:::
or

::::::::
Snappy

:
compression can significantly

reduce storage requirements
:::::::
(Figure

:::::
4A). In comparison to MonetDB the storage space

required can be even 5-7x smaller . The negative impact of
:::::::
(Table

::::
2).

::::
In

:::::::::
general

:::::
data

::::::::::
encoding

::::
and

:::::::::::::
compression

:::
in

:::::::::
Parquet

:::
is

::::::
15%

:::::::
better

:::::
than

::::::
ORC

:::
in

:::::
case

:::
of

:::::::::
Snappy

::::
and

::::::::::
gzip/Zlib

::::::::::::::
compression

::::::::::
methods.

:::::::::
Besides

:::::::::::::::::
non-compressed

::::::
data

:::::::::
encoded

:::::
with

:::::::
ORC

:::::::
format

::::
can

:::
be

::::::
even

::::::
three

::::::
times

:::::::
bigger

::::::
than

:::::::::::::::::
non-compressed

:::::
data

:::::::::
encoded

::::::
with

:::::::::
Parquet

::::::::
(Figure

:::::
4A).

:

::::::::::::
Comparison

::
of

:::::::::::
execution

::::::
times

:::::::::
revealed

:::::
that

::::::
there

::::
are

::::
no

:::::::
visible

::::::::::
overhead

::
of

:::::::::
Snappy

data compression on the query performancecan be neglected (data not shown)but it can
result in 2-3x storage reduction in case of Parquet file format while compared to the
uncompressed one

:::::::::::::
performance.

:::::
On

:::::
the

::::::
other

:::::::
hand,

:::::::::::
gzip/Zlib

:::::::::::::
compression

::::::
may

::::::
have

::::::
either

:::::::::
positive

:::
or

::::::::::
negative

::::::::
impact

:::
on

:::::::
query

:::::::::::
execution

:::::::
times,

::::::::::::
depending

:::
on

:::::
the

:::::::
query

::::::::
(Figure

:::::
4B).

:::
In

:::::
case

::
of

::::::::
queries

:::::
that

::::::::
require

::::
full

::::::
table

:::::::
scans

:::::::::
negative

::::::::
impact

::
of

:::::::::::
gzip/Zlib

::::::::::::
compression

:::::
can

:::
be

::::::::::
observed,

:::::
e.g.

:::::::::
compare

:::::::::::
execution

::::::
times

::::
for

:::
Q7.

3.4 Data model optimizations

The use of aggregation tables can result in huge speedup when running queries that
require full-table scan to compute aggregated measures

::::::::
(Figure

:::
5). In the conducted

tests it ranged from 6x in case of Tez to 44x
::::
Hive

::::
up

:::
to

::::::
100x in case of Apache Spark

with Parquet
:::::::
Presto

:::::
with

::::::
ORC

:
file format.

3.5 Application of OLAP cube

Apache Kylin can offer unbeatable performance at a cost of flexibility when running
queries following predefined patterns (i.e. hierarchies, groupings, measures). In most of
the cases it proved to be approx. 5-20x faster than Presto or SparkSQL. It can be seen
as a ’coprocessor’ boost component that can offload SparkSQL or Presto by handling
predefined but parametrized queries.

3.6
::::::::::::::::::::::::::
Recommendations

:::::
for

:::::::::::::
genomic

:::::::
data

::::::::::::::::
warehouse

::::::::::::::
designers

::::::::::
Designing

::
a

::::::::
scalable

::::::::::::
performant

:::::::::::
analytical

:::::::
system

:::::
that

::::
can

:::::::
handle

::::::::
rapidly

:::::::::
growing

::::::::
amount

::
of

:::::::::
genomic

::::::
data

::
is

:::
by

::::
no

:::::::
means

:::
an

::::::
easy

:::::
task.

::::
In

::::
this

:::::::::::::
manuscript

::
a

::::
few

::::::::
crucial

:::::::::
findings

::::
that

:::::
may

::::
be

::::::::
treated

:::
as

:::::::
design

:::::::::::
guidelines

:::::
have

::::::
been

::::::::::::
highlighted:

:

•
::::::
There

::::
are

:::::::
many

::::::::::::
competing

::::
big

:::::
data

:::::::
ready

::::
file

::::::::::
formats,

::::::
query

:::::::::
engines

:::::
and

::::::
their

::::::::::::::
combinations

::::
can

::::::::::::::
substantially

:::::::
differ

:::
in

::::::::::::::
performance

::::::::::::::::
characteristics.

:::::::::::::
Moreover,

:::::::
serious

::::::::::::::
performance

:::::::::::
differences

:::::
can

::::
be

::::::::::
observed

::::::
after

:::::::::
upgrade

::::::
from

::::
one

:::::::::
version

22



orc parquet kudu

0

500

1000

1500

0

200

400

600

0

100

200

300

0

100

200

300

0

500

1000

1500

H
IV

E
S

P
A

R
K

1
S

P
A

R
K

2
P

R
E

S
T

O
IM

P
A

L
A

ra
w

a
g
g
r

a
g
g
r_

d
e
n
o
rm ra
w

a
g
g
r

a
g
g
r_

d
e
n
o
rm ra
w

a
g
g
r

a
g
g
r_

d
e
n
o
rm

Level

M
e
a
n
 t
im

e
 [
s
]

Query

Q1A

Q1B

Q2A

Q2B

Q3A

Q3B

Q4A

Q4B

Figure 5:
:::::::
Impact

:::
of

:::::::::::::
aggregation

:::::
and

:::::::::::::::::
denormalization

::::
on

::::::
query

:::::::::::::
performace

:::
for

:::::::::
queries

:::::::
Q1-Q4.

:

23



::
of

::
a
:::::
tool

:::
to

::::::::::
another.

:::::::::::::::
Furthermore,

::::::
since

::::
all

:::
of

::::
the

::::::::::
discussed

::::::::::
solutions

:::::
are

::::::
truly

::::::::::::
distributed,

::::
also

:::::::::::::::
infrastructure

:::::::::::::::
characteristics

:::::
such

:::
as

::::::::
network

:::::::::::
interfaces

::::
and

::::::::
storage

::::::::
systems

::::::::::::
throughput

::::
can

::::::::
impact

::::
the

::::::::
system

::::::::::::::
performance.

:::::
This

::
is

:::::
why

::
it
:::
is

::::::::::
advisable

::
to

::::
use

::::::::::::::::
benchmarking

::::::::::::
frameworks

::::::
prior

::::::::
taking

::
a

:::::
final

:::::::::
decision

:::
on

:::::
the

:::::::::::::
architecture

::
of

::::
the

:::::::::
genomic

:::::
data

::::::::::::
warehouse.

:

•
::::::::
Another

::::::
clear

::::::::
finding

::
is

:::::
that

::::::
there

:::
is

:::
no

:::::::::
superior

::::::::::::::
combination

::
of

:::::::
query

:::::::
engine

:::::
and

:::::::
storage

:::::::::
format.

:::::::::
Besides,

:::
in

:::::
case

:::
of

:::::
data

::::::::::::
warehouses

:::::::::
solution

::::::
there

:::
is

::
a

:::::
need

::::
for

:::
at

:::::
least

::::::
three

::::::
kinds

:::
of

::::::::::::
processing:

::::
(i)

:::::::::::
ETL/ELT

::::::::::
(extract,

:::::::::::
transform,

::::::
load)

:::::::::::
processes

:::
for

:::::::::::::::::::
loading/refreshing

::::::::
tables,

:::::::::::::
materialized

:::::::
views

:::::::::::::
(aggregation

:::::::::
tables),

::::
(ii)

:::::::::
running

:::::
large

::::::
scale

::::::::::
analytics,

:::::
and

:::::::
finally

:::::
(iii)

:::::::::
random

::::::::
records

:::::::::::
browsing.

::::::
They

::::
all

::::::
differ

:::
in

::::::
query

::::::::
latency

:::::::::::::::
requirements.

:::
In

:::::
case

::
of

::::
the

:::::
first

:::::
two

::::::::::
scenarios,

:::
it

::
is

::::::::::::
acceptable

:::::
that

:::::::::::
processing

:::::
may

:::::
take

:::::::
longer

::::::
than

::
a

::::
few

:::::::::
seconds

:::::
(e.g.

::::
up

:::
to

::::
few

:::::::::::
minutes),

:::::::::
whereas

::::::
range

::::::::
queries

:::::
that

::::
are

:::::
used

:::
to

::::::::::
populate

:::::::
views

:::
of

::::
end

:::::
user

:::::::::::
interfaces

::::
are

::::::::::
expected

::
to

:::::::::
execute

::
in

::
a
:::::::::

fraction
:::
of

::::::::
second.

:::::::::
Taking

:::::
into

::::::::::::::
consideration

:::::::::::
presented

:::::::
results

::::
we

::::::::::::
recommend

:::
to

:::
use

::::::
ORC

::::
file

::::::::
format

:::::::::
together

:::::::
Presto

:::
as

::
a

::::
tool

::::
for

::::::::
running

::::::::::::
interactive

:::::::
queries

:::::
and

:::::::::
Apache

:::::::
Spark

:::
2

::::
for

:::::::::::::::
implementing

::::::
ETL

:::::::::::
processes

:::::
and

:::::::::::::
background

:::::::
queries

::::
for

:::::::::::
answering

:::::::::::
population

::::::
scale

:::::::::
research

:::::::::::
questions.

:

•
::::::::::::
Distributed

:::::::::
machine

:::::::::
learning

:::::::::
libraries

:::::
that

:::::::::
integrate

::::::::::::
seamlessly

:::::
with

::::::::
Apache

:::::::
Spark

:::::
such

::
as

:::::::
MLlib

::
(http://spark.apache.org/mllib/)

:::
or

::::::::::
Sparkling

:::::::
Water

::
(https://

www.h2o.ai/download/sparkling-water/)
:::::
can

:::
be

::::::::::::::
recommended

::::
for

::::::::
running

::::::
more

:::::::::::::
sophisticated

:::::::::::::
exploratory

::::::::::
analyses.

:

•
::::::::::::
Distributed

:::::::
OLAP

:::::::
cubes

:::::::::
solution

::::::::::
together

:::::
with

:::::::::::::::
denormalized

:::::::::::::
aggregation

:::::::
tables

::::
can

:::::
serve

:::
as

::::::::::::
acceleration

::::::
layer

::::::::
suitable

::::
for

:::::::::
plugging

::::
into

::::::::::::
performant

:::::
end

::::
user

:::::::::::
interfaces.

•
::
In

::::::
most

:::
of

:::::
the

::::::
cases

:::::::
usage

:::
of

::::::
data

::::::::::::::
compression

::::::
(such

::::
as

:::::::::
Snappy)

:::
is

:::::::::::
advisable

::
as

:::
it

::::::::::::::
substantially

:::::::
reduce

:::::::::
storage

::::::::::::::
requirements

::::
and

::::
do

::::
not

::::::::::::
negatively

::::::::
impact

::::
the

:::::::::::::
performance.

:::::::
Since

::::
the

:::::
data

::::
are

:::::::
stored

:::
in

::
a
:::::::::::
columnar

::::::::
fashion

::::::::
sorting

:::::
data

:::
by

:::::
low

:::::::::::
cardinality

:::::::::
columns

:::::
such

:::
as

::::::::::::::
chromosome,

::::::::::
reference

::::::
allele,

::::::::::::
alternative

::::::
allele

:::::::::
together

:::::
with

::
a

:::::::
sample

::::::::::
identifier

:::::
can

::::::::
improve

:::::
the

:::::::::::::
compression

::::::
ratios

::::::
even

::::::::
further.

:

•
:::
All

::::
the

:::::::
tested

::::::
query

::::::::
engines

::::::::
support

:::::::::::::::
JDBC/ODBC

:::::::::::
standards

::::
and

:::::
with

::::::
some

:::::::::::
additional

:::::
effort

:::::
can

::::::::
execute

:::::
the

::::::
same

:::::
SQL

:::::::::
queries.

::::::
This

:::::::::
provides

::
a
::::::::::::
possibility

::
of

:::::::::::
relatively

::::
easy

:::::
way

:::
of

::::::::::
switching

:::::::::
between

:::::::::::
execution

:::::::::
engines.

:

3.7 Summary and future directions

:::::
This

::::::
study

::
is

:::::::::
intended

:::
to

::::::
point

::::
out

::::::::::
directions

::::
for

:::::::::
database

::::::::::
designers

::::
and

:::::::::::::::::::
bioinformaticians

::::::::
wishing

:::
to

:::::
work

:::
on

::::::::::
genomic

:::
big

::::::
data

::::::::::
currently

::::::
being

::::::::::
produced

:::
by

:::::::::::::
sequencing.

:
The com-

24



putational experiment presented in the paper is an initial proof of the utility of mod-
ern columnar databases and query engines to genomic variant data warehouses. At
the same time, it was pointed out

:::
has

::::::
been

:::::::::
pointed

::::
out

::::
in

::::
the

::::::::::::::
experiments

::::::::
results

that for specific purposes the data structures and queries can be optimized and var-
ious query engines are complementary. The development of new distributed systems
is an ongoing process, so such benchmarks as presented in the paper should be run
in the future also for the novel solutions that almost certainly will be developed in
the software ecosystems. This study is intended to point out directions for database
designers and bioinformaticians expecting to operate on genomic big data that currently
are being produced by sequencing

:::::
Such

::
a

::::::::::::
benchmark

:::::
can

:::
be

:::::::
easily

::::::::::
updated,

::::::
since

:::::
the

::::::
source

::::::
code

::::
for

:::::
our

::::::::::::
automated

::::::::::::::::
benchmarking

::::::::::::
framework

:::::::
along

:::::
with

::::::
data

::::::::::::
simulator,

:::::::::
complete

::::::::
testing

::::::
data

::::
set,

::::::
SQL

::::::::
queries

:::::
and

:::::
raw

:::::::
results

:::::::::::
described

:::::::
above

::::
are

:::::::::::
publicaly

:::::::::
available

:::
at

:
https://github.com/ZSI-Bio/variantsdwh.

While
:
It

:::::::
needs

:::
to

:::
be

:::::
also

::::::::
clearly

:::::::
stated

::::::
that

::::::
there

::
is

:::::
still

::
a
:::::::
room

:::
for

:::::::::::::::
improvement

::
in

::::::
terms

:::
of

::::
the

::::::::::::::
performance

::
of

:::::::::
genomic

::::::
data

:::::::::::
warehouse

:::::::::::
solutions.

::::
Big

:::::
data

::::::::::::::
technologies

:::::
such

::
as

:::::::::
Apache

:::::::
Kudu

::
or

::::::
more

::::::::
recent

::::
one

::
-

::::::::
Apache

::::::::::::::
CarbonData

:
(http://carbondata.

incubator.apache.org
:
)

::::::::::
indicates

:::::
that

:::
it

:::::::
might

:::
be

:::::::::
possible

::::::
soon

:::
to

::::::
have

::::
one

:::::::::
storage

:::::::
format

:::::
that

:::::::::
supports

::::::::
OLAP

:::::
style

:::::::::
queries,

:::::::::::
sequential

::::::
scans

::::
and

:::::::::
random

:::::::
access

:::::::::::
efficiently.

::::::::::
Moreover,

::::::
both

:::::::::::::
technologies

::::::
allow

::::::::::::
performant

::::::::
random

:::::::::
updates

:::::
and

:::::::
inserts

:::
of

:::::
data

:::::::
which

::::::
would

:::
be

::::::::::
desirable

:::
in

::::::
many

:::::::
cases.

:::::::::
Further

:::::::::::::::
improvements

:::
in

:::::::::::
vectorized

::::::
query

::::::::::::
processing

::::::::
together

::::::
with

::::::::
better

:::::::::
support

::::
for

:::::::
Single

:::::::::::::
Instruction

:::::::::
Multiple

:::::::
Data

:::::::::
(SIMD)

:::::::::::
extension

:::::::::
available

::
in

:::::::::
modern

::::::
CPUs

:::::::
would

::::::
result

:::
in

::::::
better

:::::::::::::
performance

:::
of

::::::
query

:::::::::
engines.

::::::::::::
Integration

::
of

:::::::::::::
computation

::::::::
engines

:::::
with

::::::::::
hardware

::::::::::::::
accelerators,

:::::
such

::
as

::::::::
graphic

::::::
cards

:::::::::::::::::::
(General-purpose

:::::::::::
computing

:::
on

:::::::::
graphics

::::::::::::
processing

::::::
units,

:::::::::::
GPGPU),

::::::
could

:::
be

:::::::::::
beneficial,

:::::::::::
especially

:::
in

:::::
case

::
of

:::::::::
machine

:::::::::
learning

::::::::::
analyses.

:

:::::
Since

:
the genomic variants datasets are large indeed , thus

:::::::
indeed

::::::
large,

:
the execution

time optimization can play significant
::::::::
positive

:
role in personalised medicine research and

near future applications of large genomic biobanks. It
:::::
This is not a trivial task, so will

require more research and close collaboration between the medical domain experts and
creators of modern distributed data processing applications. In particular, knowing the
results

::
of

:::::
this

::::::
paper, it is highly recommended to do an advance

:::::
that

:
a
:
definition of query

types and templates
::
is

::::::::
created

:::
in

:::::::::
advance

:::
by

::::
the

:::::::::
working

:::::::::
together

:::
of

::::::::::
database

::::::::::
designers

with the experts of clinical genomics and test
::::
that

:
its performance with particular storage

and execution engines .
::
is

:::::::
tested

:::::
with

::::::::
similar

:::::::::::::
benchmarks.

:

FUNDING

This work has been supported by the Polish National Science Center grants:
Opus 2014/13/B/NZ2/01248 and Preludium 2014/13/N/ST6/01843 .

25



References

[1] The ARIC Investigators (1989) The Atherosclerosis Risk in Communities (ARIC)
Study: Design and Objectives. American Journal of Epidemiology, 129, 4, 687–702.

[2] Chong, J. et al. (2015) The Genetic Basis of Mendelian Phenotypes: Discoveries,
Challenges, and Opportunities. The American Journal of Human Genetics, 97, 2,
199–215. doi:10.1016/j.ajhg.2015.06.009.

[3] Kaye, J. et al. (2014) Managing clinically significant findings in research: the UK10K
example. European journal of human genetics: EJHG, 22, 9, 1100–1104. doi:10.
1038/ejhg.2013.290.

[4] Cancer Genome Atlas Research Network et al. (2013) The Cancer Genome Atlas Pan-
Cancer analysis project. Nature Genetics, 45, 10, 1113–1120. doi:10.1038/ng.2764.

[5] Davydov, E.V. et al. (2010) Identifying a high fraction of the human genome to
be under selective constraint using GERP++. PLoS computational biology, 6, 12,
e1001025. doi:10.1371/journal.pcbi.1001025.

[6] Adzhubei, I. et al. (2013) Predicting functional effect of human missense mutations
using PolyPhen-2. Current Protocols in Human Genetics / Editorial Board, Jonathan
L. Haines ... [et Al.], Chapter 7, Unit7.20. doi:10.1002/0471142905.hg0720s76.

[7] Shihab, H.A. et al. (2013) Predicting the functional, molecular, and phenotypic
consequences of amino acid substitutions using hidden Markov models. Human
Mutation, 34, 1, 57–65. doi:10.1002/humu.22225.

[8] Schwarz, J.M. et al. (2014) MutationTaster2: mutation prediction for the deep-
sequencing age. Nature Methods, 11, 4, 361–362. doi:10.1038/nmeth.2890.

[9] Vaser, R. et al. (2016) SIFT missense predictions for genomes. Nature Protocols, 11,
1, 1–9. doi:10.1038/nprot.2015.123.

[10] Morgenthaler, S. and Thilly, W.G. (2007) A strategy to discover genes that carry
multi-allelic or mono-allelic risk for common diseases: a cohort allelic sums test
(CAST). Mutation Research, 615, 1-2, 28–56. doi:10.1016/j.mrfmmm.2006.09.003.

[11] Li, B. and Leal, S.M. (2008) Methods for detecting associations with rare variants
for common diseases: application to analysis of sequence data. American Journal of
Human Genetics, 83, 3, 311–321. doi:10.1016/j.ajhg.2008.06.024.

[12] Madsen, B.E. and Browning, S.R. (2009) A groupwise association test for rare
mutations using a weighted sum statistic. PLoS genetics, 5, 2, e1000384. doi:
10.1371/journal.pgen.1000384.

26



[13] Neale, B.M. et al. (2011) Testing for an Unusual Distribution of Rare Variants. PLoS
Genet, 7, 3, e1001322. doi:10.1371/journal.pgen.1001322.

[14] Wu, M. et al. (2011) Rare-Variant Association Testing for Sequencing Data with the
Sequence Kernel Association Test. The American Journal of Human Genetics, 89,
1, 82–93. doi:10.1016/j.ajhg.2011.05.029.

[15] Schumacher, A., Pireddu, L., Niemenmaa, M., Kallio, A., Korpelainen, E., Zanetti,
G. and Heljanko, K. (2014) SeqPig: simple and scalable scripting for large sequencing
data sets in Hadoop. Bioinformatics, 30, 1, 119–120.

[16] Wiewiórka, M.S., Messina, A., Pacholewska, A., Maffioletti, S., Gawrysiak, P. and
Okoniewski, M.J. (2014) SparkSeq: fast, scalable, cloud-ready tool for the interactive
genomic data analysis with nucleotide precision. Bioinformatics, p. btu343.

[17] Niemenmaa, M., Kallio, A., Schumacher, A., Klemelä, P., Korpelainen, E. and Hel-
janko, K. (2012) Hadoop-BAM: directly manipulating next generation sequencing
data in the cloud. Bioinformatics, 28, 6, 876–877.

[18] Ameur, A., Bunikis, I., Enroth, S. and Gyllensten, U. (2014) CanvasDB: a local
database infrastructure for analysis of targeted-and whole genome re-sequencing
projects. Database, 2014, bau098.

[19] Cheng, W.Y., Hakenberg, J., Li, S.D. and Chen, R. (2015) DIVAS: a centralized
genetic variant repository representing 150 000 individuals from multiple disease
cohorts. Bioinformatics, p. btv511.

[20] Cijvat, R., Manegold, S., Kersten, M., Klau, G.W., Schönhuth, A., Marschall, T.
and Zhang, Y. (2015) Genome sequence analysis with MonetDB: a case study on
Ebola virus diversity. Datenbanksysteme für Business, Technologie und Web (BTW),
pp. 143–149.

[21] Dorok, S. (2015) The Relational Way To Dam The Flood Of Genome Data. In
Proceedings of the 2015 ACM SIGMOD on PhD Symposium. ACM, pp. 9–13.

[22] Massie, M., Nothaft, F., Hartl, C., Kozanitis, C., Schumacher, A., Joseph, A.D. and
Patterson, D.A. (2013) Adam: Genomics formats and processing patterns for cloud
scale computing. EECS Department, University of California, Berkeley, Tech. Rep.
UCB/EECS-2013-207.

[23] Dong, C. et al. (2015) Comparison and integration of deleteriousness prediction
methods for nonsynonymous SNVs in whole exome sequencing studies. Human
Molecular Genetics, 24, 8, 2125–2137. doi:10.1093/hmg/ddu733.

27



[24] Lupski, J.R. et al. (2011) Clan genomics and the complex architecture of human
disease. Cell, 147, 1, 32–43. doi:10.1016/j.cell.2011.09.008.

[25] MacArthur, D.G. et al. (2012) A systematic survey of loss-of-function variants in
human protein-coding genes. Science (New York, N.Y.), 335, 6070, 823–828. doi:
10.1126/science.1215040.

[26] Consortium, E.A. et al. (2015) Analysis of protein-coding genetic variation in 60,706
humans. bioRxiv, p. 030338. doi:10.1101/030338.

[27] Fajardo, K.V.F. et al. (2012) Detecting false positive signals in exome sequencing.
Human Mutation, 33, 4, 609–613. doi:10.1002/humu.22033.

[28] Shyr, C. et al. (2014) FLAGS, frequently mutated genes in public exomes. BMC
Medical Genomics, 7, 64. doi:10.1186/s12920-014-0064-y.

[29] Brownstein, C.A. et al. (2014) An international effort towards developing standards
for best practices in analysis, interpretation and reporting of clinical genome se-
quencing results in the CLARITY Challenge. Genome Biology, 15, 3, R53. doi:
10.1186/gb-2014-15-3-r53.

[30] Lee, S. et al. (2014) Rare-Variant Association Analysis: Study Designs and Statistical
Tests. American Journal of Human Genetics, 95, 1, 5–23. doi:10.1016/j.ajhg.2014.
06.009.

[31] Fromer, M. and Purcell, S.M. (2014) Using XHMM Software to Detect Copy Number
Variation in Whole-Exome Sequencing Data. Current Protocols in Human Genetics
/ Editorial Board, Jonathan L. Haines ... [et Al.], 81, 7.23.1–7.23.21. doi:10.1002/
0471142905.hg0723s81.

[32] Krumm, N. et al. (2012) Copy number variation detection and genotyping from
exome sequence data. Genome Research, 22, 8, 1525–1532. doi:10.1101/gr.138115.
112.

[33] Do, R. et al. (2012) Exome sequencing and complex disease: practical aspects of
rare variant association studies. Human Molecular Genetics, 21, R1, R1–9. doi:
10.1093/hmg/dds387.

[34] Sundstrom, D. (2015). Even faster: Data at the speed of Presto ORC.

[35] Lipcon, T., Alves, D., Burkert, D., Cryans, J., Dembo, A., Percy, M., Rus, S., Wang,
D., Bertozzi, M., McCabe, C.P. et al. (2015). Kudu: Storage for Fast Analytics on
Fast Data.

28



[36] Dean, J. and Ghemawat, S. (2004) MapReduce: Simplified Data Processing on Large
Clusters. To appear in OSDI, p. 1.

[37] Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin,
M.J., Shenker, S. and Stoica, I. (2012) Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing. In Proceedings of the 9th USENIX
conference on Networked Systems Design and Implementation. USENIX Association,
pp. 2–2.

[38] Chaudhuri, S. and Dayal, U. (1997) An overview of data warehousing and OLAP
technology. ACM Sigmod record, 26, 1, 65–74.

[39] Cornell, M., Paton, N.W., Wu, S., Goble, C., Miller, C.J., Kirby, P., Eilbeck, K.,
Brass, A., Hayes, A., Oliver, S.G. et al. (2001) GIMS-a data warehouse for storage
and analysis of genome sequence and functional data. In Bioinformatics and Bioengi-
neering Conference, 2001. Proceedings of the IEEE 2nd International Symposium on.
IEEE, pp. 15–22.

[40] Liu, X. et al. (2015) dbNSFP v3.0: A One-Stop Database of Functional Predic-
tions and Annotations for Human Non-synonymous and Splice Site SNVs. Human
Mutation. doi:10.1002/humu.22932.

29


