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Abstract20

Natural language descriptions of organismal phenotypes, a principal object of study in biol-21

ogy, are abundant in the biological literature. Expressing these phenotypes as logical state-22

ments using ontologies would enable large-scale analysis on phenotypic information from23

1
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diverse systems. However, considerable human effort is required to make these phenotype24

descriptions amenable to machine reasoning. Natural language processing tools have been25

developed to facilitate this task, and the training and evaluation of these tools depend on the26

availability of high quality, manually annotated Gold Standard datasets. We describe the27

development of an expert-curated Gold Standard dataset of annotated phenotypes for evolu-28

tionary biology. The Gold Standard was developed for the curation of complex comparative29

phenotypes for the Phenoscape project. It was created by consensus among three curators30

and consists of Entity-Quality expressions of varying complexity. We use the Gold Standard31

to evaluate annotations created by human curators and those generated by the Semantic32

CharaParser tool. Using four annotation accuracy metrics that can account for any level of33

relationship between terms from two phenotype annotations, we found that machine-human34

consistency, or similarity, was significantly lower than inter-curator (human–human) consis-35

tency. Surprisingly, allowing curators access to external information did not significantly36

increase the similarity of their annotations to the Gold Standard or have a significant effect37

on inter-curator consistency. We found that the similarity of machine annotations to the38

Gold Standard increased after new relevant ontology terms had been added. Evaluation by39

the original authors of the character descriptions indicated that the Gold Standard anno-40

tations came closer to representing their intended meaning than did either the curator or41

machine annotations. These findings point toward ways to better design software to augment42

human curators, and use of the Gold Standard corpus will allow training and assessment of43

new tools to improve phenotype annotation accuracy at scale.44
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1 Introduction76

Phenotype descriptions of organisms are documented across nearly all areas of biological77

research including biomedicine, evolution, developmental biology, and paleobiology. The78

vast majority of such descriptions are expressed in the scientific literature using natural lan-79

guage. While allowing for rich semantics, natural language descriptions can be difficult for80

non-experts to understand, and are opaque to machine reasoning, and thus hinder the inte-81

gration of phenotypic information across different studies, taxonomic systems, and branches82

of biology (1).83

To make phenotype descriptions more amenable to computation, model organism databases84

employ human curators to convert natural language phenotype descriptions into machine-85

readable phenotype annotations that use standard ontologies (e.g., 2, 3, 4, 5). One format86

used for phenotype annotations is the ontology-based Entity–Quality (EQ) representation, in87

which an entity represents a biological object such as an anatomical structure, space, behav-88

ior, or a biological process; a quality represents a trait or property that an entity possesses,89
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e.g., shape, color, or size; and an optional related entity allows for binary relations such as90

adjacency (6, 7). Among formal representations of phenotype descriptions, EQ is the most91

widely used, e.g., (8), although other formal representations have been proposed (9). Further,92

to create entities and qualities that adequately represent the often highly detailed pheno-93

type descriptions, curators create complex logical expressions called ‘post-compositions’ by94

combining ontology terms, relations, and spatial properties in different ways. In contrast95

to EQ expressions with single-term entities and qualities, creating post-composed entities96

and qualities (Table 1) can be a complex task, due to the flexibility in logic expression97

and the different semantic interpretations that free-text descriptions often allow. Addition-98

ally, the varied ways in which concepts from multiple ontologies can be combined to create99

post-composed expressions result in a vast set of possible EQ combinations where consis-100

tency is difficult to achieve. As a result, it can be expected that EQ annotations involving101

post-compositions will show variability between different curators.102

To best resolve the ambiguities inherent in natural language descriptions, human cura-103

tors will often not only use their domain expertise, but also refer to external information104

for deducing the original author’s intent. Phenotype descriptions found in the literature,105

however, are typically in a concise format with little or no contextualizing information that106

would help with disambiguating the intended meaning. The difficulty of disambiguation can107

be exacerbated when the requisite entity and quality domain ontologies do not yet include108

an obviously appropriate term for a particular annotation (10). As a consequence of this and109

other challenges, manual curation tends to be extremely labor-intensive, and few projects110

have the resources to comprehensively curate the relevant literature. To help address this111

bottleneck, text mining and natural language processing (NLP) systems have been devel-112

oped with the goal of supplementing or augmenting the work of human curators. Facilitating113

continuous improvement of these systems, tools, and algorithms requires means to compare114

different systems objectively and fairly with each other and with human curators, in partic-115

ular with respect to accuracy of generated annotations. This raises several questions. One,116

what is the reference against which accuracy is best assessed if annotations generated for117

a given task show variability between different human curators? Two, how consistent is118

the result of machine annotation with that of a human curator? Three, to what extent is119

machine annotation performance limited by inherent differences between how a machine and120

a human expert execute a curation task? In particular, in contrast to human curators who121

will consult external information, a software tool will normally only use the vocabulary and122

domain knowledge it is initially provided with in the form of input lexicons and ontologies.123

The variability among expert curators can be used to provide a baseline for the perfor-124

mance evaluation of automated systems. Cui et al. (11) conducted an inter-curator consis-125
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1 INTRODUCTION 5

Table 1: Examples of Entity–Quality (EQ) annotations of varying complexity from the
present study. A illustrates a simple EQ annotation; B shows an EQ annotation in which
the quality term relates two entities to each other; and C provides an example of an entity
that does not correspond to a term in an existing ontology, but is instead a complex logical
expression post-composed from multiple ontology terms.

Character:
state

Entity Quality Related entity

A: sclerotic
ossicles:
greatly
enlarged

UBERON:scleral ossicle PATO:increased
size

B: nasal-
prefrontal
contact:
present

UBERON:nasal bone PATO:in contact
with

UBERON:prefrontal
bone

C: lateral
pelvic glands:
absent in
males

UBERON:gland and
(part of some
(BSPO:lateral region and
(part of some
UBERON:pelvis and
(part of some
UBERON:male
organism))))

PATO:absent
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tency experiment to evaluate Semantic CharaParser (SCP), a natural language processing126

tool designed for generating EQ annotations from character descriptions in the compara-127

tive anatomy literature (specifically, from phylogenetic character matrices (12)). Characters128

consist of two or more character states contrasting the variation in phenotype among a set129

of taxa. Character-by-taxon matrices are used in phylogenetic and comparative analyses to130

infer the evolutionary relationships among the taxa under study, and to reconstruct putative131

character state evolution on the phylogeny.132

To our knowledge, SCP is the first semi-automatic software designed to generate EQ133

annotations. SCP works by parsing the original character descriptions to identify entity and134

quality terms, matching these terms to ontology concepts, and generating logical relations135

and, where appropriate, post-compositions from the matched concepts based on a set of rules.136

In the experiment, three curators independently annotated a set of 203 characters, randomly137

chosen from seven publications representing extant and extinct vertebrates for a variety of138

anatomical systems with an emphasis on skeletal anatomy, corresponding to the curators’139

domain of expertise (Table 2). In the first, or “Näıve”, round of annotation, curators were140

not allowed access to sources of knowledge external to the character description, including141

the publication from which the matrix originated. In the second, or “Knowledge” round,142

curators were allowed to access external sources of knowledge, such as the full publication143

from which the character was drawn, related literature and other online sources. The curators144

were given a set of initial ontologies to use for curation. The new ontology terms created145

during curation were added to the “Initial” ontologies to create curator-specific “Augmented”146

ontologies. At the end of the curation rounds, all curator-specific augmented ontologies were147

merged to create a final “Merged” ontology.148

The Cui et al. (11) study was designed such that SCP was used to annotate the same149

set of characters as human curators using three sets of ontologies (Initial, Augmented, and150

Merged) with progressively more comprehensive coverage, as described below. The primary151

findings were as follows. The performance of SCP was significantly lower as compared to152

human curators. When comparing the performance of SCP to human curators, no statisti-153

cally significant differences were found between Näıve and Knowledge rounds. Inter-curator154

Recall and Precision were also not found to be significantly different between the Näıve and155

Knowledge rounds. SCP performed significantly better with Augmented versus Initial on-156

tologies. However, there was no significant difference in performance between Augmented157

and Merged ontologies.158

While useful, there were several limitations in the Cui et al. (11) evaluation of SCP,159

including the lack of a Gold Standard against which to measure its performance. Manually160

annotated Gold Standard datasets are high quality benchmarks for both evaluation and161
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2 RELATED WORK 7

training of automated NLP systems e.g., (13, 14, 15). Another limitation was the use of162

performance measures that did not fully account for the continuum of similarity possible163

between semantic phenotype annotations. While these authors recognized that phenotypes164

annotated with parent and daughter terms in the ontology bear some partial resemblance,165

here we introduce semantic similarity measures that can account for any level of relationship166

between the terms from two phenotype annotations.167

The present work describes the development of an expert-curated Gold Standard dataset168

of annotated phenotypes for evolutionary biology that is the best available given current169

constraints in semantic representation. The Gold Standard was developed for the annota-170

tion of the complex evolutionary phenotypes described in the systematics literature for the171

Phenoscape project (12, 16). Unlike many published gold standards for ontology annota-172

tion, which frequently focus on entity recognition, e.g., (17), the Phenoscape Gold Standard173

consists of EQ expressions of varying complexity. We evaluate how well the annotations of174

individual curators and the machine (SCP) compare to those of the Gold Standard, using175

four ontology-aware metrics. Two of these are traditional measures of semantic similarity176

(18) and two are extensions of Precision and Recall that account for partial semantic sim-177

ilarity. In addition, we directly assessed the quality of the Gold Standard with an author178

survey, in which the original domain experts were invited to rank the accuracy of a subset179

of the annotations from the Gold Standard, the individual human curators, and SCP.180

2 Related Work181

Gold standard corpora are collections of articles manually annotated by expert curators,182

and they provide a high quality comparison against which to test automated text processing183

systems. Funk et al. (15), for example, used the CRAFT annotation corpus (17, 19) for the184

evaluation of three concept annotation systems. Within the biomedical sciences, a number185

of Gold Standard corpora have been developed (20, 21, 22), and these focus on concept186

recognition. Concepts are annotated at the text string level, e.g., (17) or in some cases,187

annotations are attached at the whole document level, e.g., (21). Because of the effort and188

costs required for manual annotation, “silver standard” corpora have also been created, in189

which automatically generated annotations are grouped into a single corpus (23, 24). As190

far as we are aware, there are no published Gold Standard corpora for EQ phenotypes, and191

none for evolutionary phenotypes.192

Inter-curator consistency has been used by several studies as a baseline against which193

to evaluate the performance of automated curation software (25, 26, 27). Weigers et al.194

measured the performance of text mining software that identifies chemical–gene interactions195
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from the literature by comparing the output against inter-curator consistency on the same196

task (25). Sohngen et al. evaluated the performance of the DRENDA text-mining system,197

which retrieves enzyme-related information on diseases (26). Most similar to the work re-198

ported here is the study by Camon et al. (27) in which inter-curator consistency was used as199

a baseline to evaluate performance of text mining systems to retrieve Gene Ontology terms200

from literature. In their experiment, three curators co-curated 30 papers and extracted GO201

terms from the text. In inter-curator comparisons, GO term pairs were classified into three202

categories: exact matches, same lineage (terms related via subsumption relationships), and203

different lineage (unrelated terms). They found that curators chose exactly the same terms204

39%, related terms 43%, and unrelated terms 19% of the time. Our approach differs in that205

we evaluate inter-curator consistency at the task of phenotype (EQ) annotation, and we em-206

ploy metrics that can account for partial matches between annotations by taking advantage207

of both ontology structure and the information content from annotation frequencies.208

3 Methods209

3.1 Source of phenotypes210

Twenty-nine characters were randomly selected from each of seven published phylogenetic211

studies, yielding 203 characters and 463 character states in total (Table 2). The studies were212

chosen to (i) have a wide taxonomic breadth across vertebrates, (ii) include both extinct213

and extant taxa, and (iii) include characters from several anatomical systems (e.g., skeletal,214

muscular, nervous systems). These objectives were intended to reduce potential sources215

of systematic bias. For example, the prevailing style of character descriptions can differ216

depending on the taxonomic group of interest. Further, the curators had varying expertise217

across the vertebrate taxa. The characters and character states presented to curators were218

extracted directly from the character list in each publication (e.g., “Pelvic plate semicircular219

with anterolateral concavity. Absent (0); present (1)” from character 39 in Coates and220

Sequeira (28)). Thus curators had access to the full character and state descriptions for221

each of the selected characters, in addition to taxonomic scope and publication source, but222

they—and the SCP developers—were blind to the choice of papers and the selection of223

characters prior to the experiment.224

3.2 Experimental design225

The common set of character states was annotated independently by three curators (W. Dah-226

dul, T. A. Dececchi and N. Ibrahim) and by Semantic CharaParser (SCP). The curators were227
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3 METHODS 9

Table 2: Phylogenetic studies from which characters were selected.

Reference Taxonomic group No. taxa No. characters
Hill (29) Amniotes 80 365
Skutschas and Gubin (30) Amphibians 22 69
Nesbitt et al. (31) Birds 22 107
Coates and Sequeira (28) Cartilaginous fishes 23 86
Chakrabarty (32) Cichlid fishes 41 89
O’Leary et al. (33) Mammals 84 4,541
Conrad (34) Squamate reptiles 223 363

randomly assigned identifiers C1, C2, and C3 at the beginning of the study. Curators used228

Phenex software (10, 35) for manually generating annotations. The annotations are complex229

expressions made up of entity (E), quality (Q) and where required, a related entity (RE). The230

E and RE components employ Uberon (36, 37) concepts and may be post-composed with231

terms from multiple ontologies including Uberon, PATO (38, 39), and the Spatial Ontology232

(BSPO) (40) while the Q component uses PATO concepts. Curators were free to create one233

or multiple EQ annotations per state, and they were encouraged to annotate at a fine level234

of detail (41). To measure the effect of external knowledge on inter-curator consistency, two235

rounds of human curation were performed. In the first (“Näıve”) round, the character and236

character state text were the only information the curators were allowed to consult. Access-237

ing the source publication or any external information was not permitted. This was intended238

to simulate the extent of information available to SCP, although curators naturally use their239

subject domain expertise when composing annotations. In the second (“Knowledge”) round,240

the curators annotated the same set of characters as in the Näıve round, but they were free241

to consult the full text of the source publication and to access any other external informa-242

tion. In total, this resulted in six sets of human-curated EQ annotations, and six augmented243

ontologies produced by the curators independently during the Näıve and Knowledge rounds.244

Several steps were taken to promote consistency among the human curators, and between245

curators and SCP. First, curators developed and were trained on a set of curation guidelines246

for the annotation of phylogenetic characters (the Phenoscape Guide to Character Annota-247

tion (42)). These guidelines were also made available to SCP developers, and are the basis of248

rules according to which SCP generates EQ expressions. Second, curators took advantage of249

an interactive Consistency Review panel available in Phenex, which reports missing or prob-250

lematic annotations, such as a relational quality used to annotate a character state without251

also specifying a related entity. Further, each curator had at least one year of experience252

with EQ annotation prior to the experiment. Note that each curator still performed their253

curation tasks in the experiment independently from each other, and thus there was still254
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room for variation. For instance, for a given character state, one curator might choose to use255

an imperfectly matching entity term, while another might aim for a more precise represen-256

tation by post-composing a new term from existing terms, and yet another might choose to257

add a new single term to their Initial ontology. To avoid advantaging SCP beyond an initial258

training dataset, SCP developers were not allowed to observe the human curation process259

during the experiment.260

3.3 The Gold Standard261

The Gold Standard corpus, which consists of a unique set of EQ annotations for each char-262

acter state in the 203 character dataset, was created as a consensus dataset by the three263

curators. After completing the Knowledge round, the curators reviewed and discussed all264

the EQs in their three separate Knowledge round curator datasets for the purpose of devel-265

oping a single Gold Standard dataset. In assembling this set of EQ annotations for the Gold266

Standard, the curators were not limited to choosing among the individual EQs that they267

had created during the experiment; instead, they were free to modify existing annotations268

or create entirely new ones. In cases where there was insufficient information to resolve am-269

biguities, the curators consulted additional published literature and other online resources.270

In some cases, they also contacted domain experts to clarify terminology or anatomy. Once271

all three curators were in agreement, they used the Phenex curation software to create the272

Gold Standard EQ annotations for the final Gold Standard dataset.273

In the course of developing the Gold Standard, the curators updated the best practices274

for EQ annotation of characters documented in the Phenoscape Guide to Character An-275

notation (42). We updated the list of commonly encountered character categories (e.g.,276

presence/absence, position, size) with new categories, examples, and EQ conventions. Each277

phenotype in the Gold Standard references one or more of the character categories from the278

guide.279

3.4 Ontologies280

The human curators and SCP were provided with the same initial set of ontologies: the281

Uberon anatomy ontology (version phenoscape-ext/2013-03-15, (36, 37)), the Spatial On-282

tology (BSPO) (release 2013-05-17, (40)), and the Phenotype and Trait Ontology (PATO)283

(release 2013-06-03, (39)).284

In both the Näıve and Knowledge rounds, each curator was free to provisionally add285

terms that they deemed missing from any of the Initial ontologies, resulting in Augmented286

ontologies that differed from their Initial versions. New term requests were added as pro-287
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3 METHODS 11

visional terms by using the Ontology Request Broker in Phenex (10), which provides an288

interface to the BioPortal’s provisional term API (43). Ontology curators can subsequently289

resolve these requests as mistakenly overlooked existing terms, new synonyms to existing290

terms, or bona fide new terms. At the end of the experiment, there were six sets of Aug-291

mented ontologies, one from each curator in each round (Table 3). These were subsequently292

combined to produce a Merged set of ontologies for which redundant classes were manually293

reconciled. To test the effect of ontology coverage on automated EQ annotation, SCP was294

run with the Initial ontology, the Augmented ontologies, and the final Merged ontology. The295

results in each case were compared to those obtained by the human curators, as reported in296

Cui et al. (11).297

Table 3: Augmentation of entity (UBERON), quality (PATO), and spatial (BSPO) ontologies
by the three curators in both rounds of curation (Näıve and Knowledge). The final Merged
ontology includes the reconciled set of terms from all six Augmented ontologies.

Curation Human Terms added to:
round curator UBERON PATO BSPO
Näıve C1 109 70 3

C2 49 32 0
C3 89 23 2

Knowledge C1 129 74 3
C2 72 52 0
C3 108 35 3

Merged 199 127 7

3.5 Measuring similarity between annotation sources298

When different ontology terms are chosen to annotate a given character state, the selected299

terms may nonetheless be semantically similar. Thus, it is desirable to use measures of300

annotation similarity that allow for varying degrees of relatedness using the background301

ontology and annotation corpus (18). Here, we use four measures, two of which are semantic302

similarity metrics with a history of usage in the literature, and two of which are modifications303

of the traditional measures of Precision and Recall that account for different but semantically304

similar annotations. All four measures can be applied to both full EQ annotations and to305

comparisons among entity terms alone.306

Semantic similarity measures between annotation sources (e.g., different curators) were307

aggregated at the level of the individual character state, and across all character states308

(Figure 1). Aggregation of pairwise (EQ to EQ) annotations by character state is necessary309

because a curator may generate more than one EQ annotation for a given character state.310
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This is illustrated by Figure 1 where Curator A generated three EQs and Curator B generated311

two EQs for State i. To measure the overall similarity between two annotation sources (e.g.,312

Curator A to Curator B in Figure 1, top), we first compute a similarity score between313

corresponding character state pairs as the best match (maximum score) among all pairwise314

comparisons between EQs for the same character state (Maximum Character State Similarity315

in Figure 1). We then compute the similarity between two annotation sources by taking the316

arithmetic mean of the pairwise character state similarity scores across all character state317

pairs (Mean Curator Similarity in Figure 1, bottom).318

3.5.1 Generating subsumers for EQ annotations319

We treat each EQ annotation as a node in an ad hoc EQ ontology. Creating the complete320

cross-product of the component ontologies would necessarily include all possible subsumers321

but would be prohibitive. As a memory saving measure, we developed a computationally322

efficient approach to identify subsumers for EQ annotations on an ad hoc basis, as follows.323

A comprehensive ontology was created by taking the union of Uberon, PATO and BSPO324

ontologies using the –merge-support-ontologies command in the owltools software (https://325

github.com/owlcollab/owltools). In order to enable reasoning on additional dimensions326

(e.g., part of ) in post-compositions while identifying subsumers, we added additional classes327

to the comprehensive ontology. For every concept U in the Uberon ontology and every object328

property OP used in post-compositions, a class of the form “OP some U ” was added to the329

comprehensive ontology.330

First, every EQ annotation is split into individual E, Q, and optionally, RE components331

(Figure 2, Step 1). Simultaneously, the EQ annotation is transformed into an OWL class332

expression of the form “Q and inheres in some E and towards some RE” (Figure 2, Step333

1). Next, superclasses of these individual components and the class expression are retrieved334

using the ELK reasoner on the comprehensive ontology (Figure 2, Step 2). Individual E, Q,335

RE superclasses are combined to create superclasses of the form E-Q-RE. The combined class336

expression and combinatorial E-Q-RE superclasses form the subsumers of an EQ annotation337

(Figure 2, Step 3). While it is possible that additional subsumers could be found in the case338

that a class in another part of the hierarchy has a logical definition that matches an EQ339

expression, it is unlikely for these ontologies because subsuming quality terms in the PATO340

ontology do not have logical definitions which make use of Uberon entities.341

https://github.com/owlcollab/owltools
https://github.com/owlcollab/owltools
https://github.com/owlcollab/owltools
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Curator A Curator B

State 1

State 2

State 3

State 1

State 2

State 3

Mean Curator 
Similarity

EQ 1

EQ 2

EQ 3

EQ 1

EQ 2

Curator A
State i

Curator B 
State i

Maximum Character 
State Similarity

Figure 1: Similarity of annotations between two curators is calculated across multiple
character states (e.g., states 1-3, bottom). First, the maximum character state similarity is
calculated at the level of a single character state, and is the best match (maximum score)
in pairwise comparisons across that state’s EQ annotations. Mean curator similarity is then
calculated as the mean of the maximum similarities across all character state pairs.
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3.5.2 Jaccard Similarity342

The Jaccard Similarity (Jsim) between nodes N1 and N2 in an ontology graph is defined as343

the ratio of the number of nodes in the intersection of their subsumers over the number of344

nodes in the union of their subsumers (44):345

Jsim(N1, N2) =
|S(N1) ∩ S(N2)|
|S(N1) ∪ S(N2)|

where S(Ni) is the set of nodes that subsume Ni. Jsim measures the distance between346

two EQs based on the class structure of the ontology. The range of Jsim = [0, 1]. Jsim = 1347

when the two EQs being compared are the same and Jsim = 0 when they have no common348

subsumers.349

3.5.3 Information Content350

Jsim measures the ontology graph distance between two nodes, and thus necessarily ignores351

differences in semantic specificity between parent and child terms in different areas of the352

ontology graph. Information Content (IC) is used to capture the specificity of the annota-353

tions. The Information Content I of a node Nj in an ontology is defined as the proportion354

of annotations to Nj and all nodes subsumed by Nj in an annotation corpus (45). Let q be355

the number of nodes in the ontology. Define f(N) to be the number of annotations directly356

to Nj and S(Nj) to be the set of nodes subsumed by Nj:357

I(Nj) = − log(p(Nj))

where358

p(Nj) =

∑
M∈S(Nj)

f(M)∑q
i=1 f(Ni)

The I of two nodes is defined as the I of the Least Common Subsumer (LCS) of the359

two nodes. If there are multiple LCSs, the node with the highest I is used (44). I has a360

minimum of zero at the root and a maximum that is dependent on the size of the corpus361

Imax = −log
(

1∑q
i=1 f(Ni)

)
To obtain a normalized score In in the range of [0, 1], we use In = I/Imax. In our analysis,362

the corpus for measurement of In includes all human annotations from both annotation363

rounds and the annotations from SCP.364
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3.5.4 Partial Precision and Partial Recall365

Precision and Recall are commonly used to evaluate the performance of information re-366

trieval systems. Traditionally, these two measures do not attempt to account for imperfect367

matches; information is either retrieved or it is not. For ontology-based annotations, partial368

information retrieval is possible because the information to be retrieved is the semantics of369

the annotated text, rather than a particular term. To account for this, here we use two370

metrics, Partial Precision (PP ) and Partial Recall (PR), to measure the success of semantic371

information retrieval by a test curator (CT ) relative to a reference curator (CR), where a372

curator can be understood as either human or software. While other variants of semantic373

precision and recall are used in the literature (46, 47), the measures we use here specifically374

use semantic similarity, in this case Jsim, to quantify partial matches between annotations. In375

contrast to our approach, (46) and (47) compute semantic precision and recall by examining376

the superclass sets of two annotations. Depending on the overlap among these sets, each377

superclass is classified as a true positive, false positive, or false negative. These counts are378

then used to compute semantic precision and recall.379

PP measures the proportion of the semantics annotated by CR that are retrieved by CT380

relative to the number of CT annotations. PR, on the other hand, measures the proportion381

of semantics that are retrieved by CT relative to the number of CR annotations. Thus, both382

PP and PR have a range of [0,1]. PP will decrease due to extra annotations by CT that383

are dissimilar from those in CR, while PR will decrease due to extra annotations in CR that384

are lacking from CT . Both use Jsim to measure semantic similarity and are computed at385

the character-state level rather than the individual EQ annotation level. Using CR and CT386

as an example, they are calculated as:387

PP =
1

Y

Y∑
j=1

X
max
i=1

Jsim(EQCR,i, EQCT ,j) (1)

PR =
1

X

X∑
i=1

Y
max
j=1

Jsim(EQCR,i, EQCT ,j) (2)

where i = 1..X indexes the EQs from CR and j = 1..Y indexes the EQs from CT .388
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3.6 Author assessment of Gold Standard, curator, and machine389

annotations390

To assess how close EQ annotations created by the different sources came to the intent of the391

authors of the seven studies from which the characters were drawn, an author from each was392

invited to evaluate the relative performance of the annotation sources. Using SurveyMonkey393

(www.surveymonkey.com), we presented one author from each study with ten randomly394

selected character states derived from their publication and asked them to rank the five395

different annotation sources (C1, C2, C3, SCP, GS) for each state [Section 1, Supplementary396

Materials].397

Authors were given background material at the beginning of the survey describing the398

EQ method of character annotation. Authors were then asked to rank annotations in order399

of preference, with the annotation that best represented the meaning of the character state400

ranked first. Annotations were presented in random order, and the source of each annotation401

could not be tracked by the author. All of the EQ annotations for each character state402

generated by a particular annotation source were presented to the authors.403

We used two statistics to test for differences among author preferences for the differ-404

ent annotation sources (48). Anderson’s statistic, A, was used to test whether the overall405

distribution of ranks was different in the observed (O) data than expected (X):406

A =
t− 1

t

∑
i,j

(O(i, j)− X(i, j))2

X(i, j)

where t = 5 is the number of possible ranks and the expected number of observations407

X(i, j) = n/t for factor i assigned rank j and number of observations n. A was tested against408

a χ2 distribution for significance with (t − 1)2 degrees of freedom. The null hypothesis is409

that all author preferences for all annotation sources will be equally frequent.410

Friedman’s statistic, F , was used to test if the mean ranks of the different annotation411

sources differed from chance:412

Ri =
t∑

j=1

j ·O(i, j)

413

F =
12

nt(t+ 1)

t∑
i

(
Ri −

n(t+ 1)

2

)2

where t = 5 is the number of annotation sources, i = 1..t is the annotation source, j = 1..t is414

the number of ranks that can be assigned to an annotation, obs(i, j) is the number of times415

rank j was assigned to factor i, and n is the number of observations, as before. F was tested416

www.surveymonkey.com
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against a χ2 distribution for significance with t− 1 = 4 degrees of freedom.417

4 Results418

4.1 Datasets and source code419

The Gold Standard corpus is available in NeXML (49) (Gold Standard-final.xml) and420

spreadsheet formats (Excel: GS-categories.xls; tab-delimited: GS-categories.tsv). The421

files include the full-text character and character state descriptions, the source study, and the422

associated EQ phenotypes. The spreadsheet format also contains references for each pheno-423

type to the character categories from the Phenoscape Guide to Character Annotation (42).424

The corpus in the different formats, as well as the ontologies and annotations generated in its425

production, have been archived at Zenodo (https://doi.org/10.5281/zenodo.1345307).426

The source code for the analysis of inter-curator and SCP consistency based on semantic427

similarity metrics, as well as the data and ontologies used as input, have been archived428

separately, also at Zenodo (https://doi.org/10.5281/zenodo.1218010). The source code429

used to randomly select characters for the Gold Standard (50) is available as part of the430

Phenex software code repository, which has been previously archived at Zenodo (https:431

//doi.org/10.5281/zenodo.838793).432

Semantic CharaParser is available in source code from GitHub (https://github.com/433

phenoscape/phenoscape-nlp/) under the MIT license. The version used for this pa-434

per is the 0.1.0-goldstandard release (https://github.com/phenoscape/phenoscape-nlp/435

releases/tag/v0.1.0-goldstandard), which is also archived at Zenodo (https://doi.436

org/10.5281/zenodo.1246698).437

4.2 Gold Standard438

The Gold Standard dataset consists of 617 EQ phenotypes annotated for 203 characters and439

463 character states. In total, these phenotypes are composed of 1,096 anatomical terms440

(312 unique concepts) from Uberon, 698 quality terms (147 unique) from PATO, and 148441

spatial terms (30 unique) from BSPO. The dataset contains 339 post-composed terms (277442

anatomical and 62 quality terms) created by relating existing terms from the same or different443

ontologies.444

New anatomy and quality terms were required for the completion of the Gold Standard445

annotations. From the full set of terms individually created by the curators during the446

experiment (Table 3), a total of 111 anatomical terms and 12 synonyms, and 20 quality terms447

and two synonyms, were added to the public versions of Uberon and PATO, respectively.448

https://doi.org/10.5281/zenodo.1345307
https://doi.org/10.5281/zenodo.1218010
https://doi.org/10.5281/zenodo.838793
https://doi.org/10.5281/zenodo.838793
https://doi.org/10.5281/zenodo.838793
https://github.com/phenoscape/phenoscape-nlp/
https://github.com/phenoscape/phenoscape-nlp/
https://github.com/phenoscape/phenoscape-nlp/
https://github.com/phenoscape/phenoscape-nlp/releases/tag/v0.1.0-goldstandard
https://github.com/phenoscape/phenoscape-nlp/releases/tag/v0.1.0-goldstandard
https://github.com/phenoscape/phenoscape-nlp/releases/tag/v0.1.0-goldstandard
https://doi.org/10.5281/zenodo.1246698
https://doi.org/10.5281/zenodo.1246698
https://doi.org/10.5281/zenodo.1246698
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The remaining subset of terms created by curators in the Merged ontology were not added to449

the public ontology versions either because a different term was chosen for the GS annotation450

of a particular character, or the term was determined to be invalid after discussion among451

curators.452

Using Jsim and In (see Section 3.5) to measure semantic similarity between the four453

individual annotation sources (C1, C2, C3, SCP) and the Gold Standard, we examined (i)454

whether the human annotations (C1, C2, C3) showed an increase in similarity to the Gold455

Standard between the Näıve and Knowledge rounds and (ii) whether the machine annotations456

(SCP) showed an increase in similarity to the Gold Standard as ontologies progressed from457

the Initial, to Augmented, and to the final Merged version.458

Figure 3 shows similarity (as measured by PP , PR, Jsim, and In) between annotations459

derived from the curators and the Gold Standard in Näıve and Knowledge curation rounds.460

Based on two sided, paired Wilcoxon signed rank tests, PR and Jsim significantly differed461

for C1 (PR: p =1.10× 10−12, Jsim: p = 2.06× 10−10) and C2 (PR: p = 8.49× 10−5,462

Jsim: p = 0.0002), PP significantly differed for C1 (p = 1.24× 10−10), while In significantly463

differed for C1 (p = 2.15× 10−11) between the Näıve and Knowledge rounds.464

Quality
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OWL Class 
Expression
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of E-Q-RE 
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EQ 
annotation

Entity
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Related Entity 
superclasses
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Class 
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Query superclasses 
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Step 2: Obtain superclasses of individual componentsStep 1: Split into individual components
Step 3: Combine 
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with 

class expression 

superclasses 
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Figure 2: EQ annotations are split into Entity (E), Quality (Q), and Related Entity (RE)
components, and also, transformed into an OWL class expression. Superclasses of E, Q,
RE, and the class expression are queried via ELK. E, Q, RE superclasses are combined in
the form E-Q-RE. These E-Q-RE superclasses along with the class expression’s superclasses
form the subsumers of the EQ annotation for computation of semantic similarity.

Similarity of SCP annotations to the Gold Standard increased (26% average improve-465

ment across the four metrics) after new ontology terms had been added by human curators466

(detailed results are in Supplementary Materials, Table 2). The majority of statistics were467

significantly affected between the use of the Augmented and final Merged ontologies in both468

annotation rounds (Figure 4) with a few exceptions. PP and Jsim were not affected for C1469
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Figure 3: Similarity of human annotations to the Gold Standard in Näıve and Knowledge
rounds. Shown are means across all 463 character states. Error bars represent two standard
errors of the mean. Curators C1 (as per PP , PR, Jsim, and In) and C2 (as per PR, Jsim)
were significantly closer to the Gold Standard in the Knowledge round as compared to the
Näıve round. Detailed results are shown in Supplementary Materials, Table 1
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in the Knowledge round while PR was not affected in both rounds for C2. For C3, Jsim,470

PP in the Knowledge round and PR in Näıve round were not significantly affected. p-values471

for individual comparisons are shown in Supplementary Materials, Table 2.472
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Figure 4: Effect of ontology completeness on SCP performance as measured by similarity
to the Gold Standard. ‘Mean Augmented’ is the mean of similarity scores from the three
curator augmented ontologies; error bars show two standard errors of the mean. Significant
differences in similarity between SCP and the Gold Standard were found for the majority
of statistics across the two rounds. Detailed results are shown in Supplementary Materials,
Table 2



4 RESULTS 21

Table 4: Evaluation of annotations by original authors. Authors ranked the annotations from
the Gold Standard, the three human curators (C1, C2 and C3) and Semantic Charaparser
(SCP). A lower value corresponds to an annotation deemed to be more accurate or precise.

Annotation
source Mean rank

Gold Standard 2.55
C1 2.62
C2 3.02
C3 3.15

SCP 3.67

4.3 Consistency among human curators473

We computed consistency among curators for the EQ annotations generated for each char-474

acter state. Figure 5 shows the mean inter-curator consistency scores across three pairwise475

comparisons in the Näıve and Knowledge rounds respectively for Partial Precision (PP ),476

Partial Recall (PR), Jsim, and In. The differences between Näıve and Knowledge rounds477

are not statistically significant (two sided, paired Wilcoxon signed rank tests, n = 463,478

p > 0.05 for all comparisons). These results echo those reported by Cui et al. (11) for479

the same experiment but reflect statistics that account for ontology structure or annotation480

density.481

To evaluate whether the absence of a difference in inter-curator consistency between the482

Näıve and Knowledge rounds was because curators made mostly the same annotations in483

both rounds, Cui et al. (11) examined the changes in EQ annotations. They found that484

curators created substantially different EQ annotations in the Knowledge round as compared485

to the Näıve round. Each curator changed EQ annotations between these rounds for more486

than 50% of character states. Among the EQs that were different between the two rounds,487

29% were more complex, 33% were less complex, and 38% retained the same complexity in488

the Knowledge round.489

Due to the lack of significant differences between inter-curator consistency in Näıve and490

Knowledge rounds (Figure 5), we only report curator results for the Knowledge round in491

subsequent sections.492

4.4 Human–machine consistency493

Using the same metrics as above, we compared the human-generated annotations to those494

generated by SCP. To evaluate the effect of the completeness of ontologies on SCP perfor-495

mance, we ran SCP separately with the Initial ontology, each of the three (C1, C2, or C3)496
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Augmented ontologies, and the Merged ontology. Approximately 15-20% of character state497

annotations made by SCP using the different ontologies contained incomplete EQs. Incom-498

plete EQs refer to those statements that are only partially matched to ontology terms, e.g.,499

either E or Q terms are matched. In case of post-compositions, some parts needed in the500

composition are not matched to an ontology term. Human–machine comparisons involving501

character states with incomplete EQs were awarded a 0 similarity score.502

We found that machine-human consistency was significantly lower than inter-curator con-503

sistency by an average of 35% across the four metrics (detailed results are in Supplementary504

Materials, Tables 3, 4). The overall averages for the four scores in the human–machine com-505

parison (unfilled square markers in Figure 5) are substantially lower than the averages for the506

comparisons among the human curators (circle markers in Figure 5). These comparisons are507

statistically significant for all four metrics (two sided, paired Wilcoxon signed rank test: PP :508

p = 1.82× 10−13; PR: p = 3.36× 10−43; Jsim: p = 7.78× 10−18, In: p = 9.83× 10−32).509

4.4.1 Effect of ontology completeness on SCP-human consistency510

Figure 5 shows the resulting PP , PR, Jsim, and In scores comparing SCP annotations511

generated with the Initial, Merged, or Augmented ontologies (plus, unfilled square, and512

filled square markers, respectively) to annotations from the human Knowledge round (as513

noted above, no statistically significant differences were found in SCP similarity to human514

annotations between the Näıve versus Knowledge rounds). However, almost universally, the515

scores among the similarity metrics increased as the ontologies progressed from Initial to516

Augmented and then from Augmented to Merged. The one exception is Partial Precision,517

which declined from the Augmented to the Merged ontology. All these increases, and the518

one decrease, were found to be statistically significant with two-sided paired Wilcoxon rank519

sum tests at the Bonferonni-corrected threshold of α = 0.0008 (Table 5).520

Table 5: Comparison of Semantic CharaParser annotations using Initial, Augmented, and
Merged ontologies to measure the effect of ontology completeness on SCP-human consistency.
Shown are p-values from two-sided paired Wilcoxon rank sum tests.

Comparison PP PR Jsim In
Initial vs. Augmented ontologies 9.45× 10−46 7.98× 10−39 1.67× 10−19 1.43× 10−14

Augmented vs. Merged ontologies 1.71× 10−15 7.26× 10−23 3.02× 10−16 8.35× 10−16

4.5 Author evaluation521

We received responses to survey requests from six of the seven authors of the seven source522

studies (Table 2). Of the six completed surveys, 3 authors evaluated (ranked) phenotypes523
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Figure 5: Mean inter-curator consistency and mean similarity between human and machine
(SCP) generated annotations. Error bars show two standard errors of the mean. Inter-
curator consistency results are shown for both the Näıve and Knowledge annotation rounds.
SCP runs used either the Initial, C1, C2, or C3 Augmented, or the Merged ontologies.
Only SCP similarity to human-generated annotations from the Knowledge round are shown.
Consistency between SCP annotations to human annotations was significantly lower than
human inter-curator consistency. Across all metrics, SCP annotation similarity to human
annotations increased significantly between the use of Initial to Augmented ontologies and
again from Augmented to the Merged ontology except for PP (decreased from Augmented
to Merged). Detailed results are in Supplementary Materials, Tables 3, 4

.
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for all 10 characters; 1 author ranked 9 characters; and 2 authors ranked 8 characters.524

Table 4 reports the mean rank assigned to each curation source. The overall distribution of525

ranks differed significantly among the curation sources (Friedman’s statistic, p = 0.001 14)526

and there were significant differences among the mean ranks of each (Anderson’s statistic,527

p = 0.00133). The GS had the lowest mean rank among the annotation sources, and authors528

ranked the GS annotations first for 21 out of 55 characters, indicating that the GS came529

closest to the meaning of the original authors more frequently than others. SCP had the530

highest mean rank, indicating that the machine annotations were farthest away from the531

original authors’ intent more frequently than the individual human curators or the GS.532

5 Discussion533

5.1 Gold Standard534

Phenotype curation is typically done manually, without significant assistance from machines.535

It is difficult and time-consuming, and across a wide variety of fields, from agriculture to536

medicine, it has been found not to scale to the size of the task at hand (51, 52). Develop-537

ing effective machine-based methods to aid in this task, however, requires standards against538

which to measure machine performance. The corpus of annotations developed here as a Gold539

Standard is the result of a methodical, multi-step process. Beginning with the choice of seven540

papers in the field of phylogenetic systematics that represent phenotypic diversity across ex-541

tinct and extant vertebrates, a set of 203 characters (463 states) were randomly selected.542

Three experienced curators with training and experience in EQ annotation and research543

backgrounds in vertebrate anatomy and phylogenetics independently annotated the charac-544

ters while simultaneously augmenting the initial ontologies. After merging their individual545

augmented ontologies, the three curators then discussed their annotations for each character546

state, and in some cases referenced external knowledge and contacted domain experts to547

clarify concepts, to develop consensus annotations. We then turned to the researchers who548

conceived of and described the original character states to assess the consensus annotations in549

relation to the machine-generated and individual curator annotations. Their judgment that550

the consensus annotations were on average closest in meaning to their original representation551

in free text validates use of the consensus annotations as a Gold Standard.552

The Gold Standard presented here is the first of its type for evaluation of progress in553

machine learning of EQ phenotypes. It differs in a number of other ways from previously554

published Gold Standard corpora in the biomedical sciences. Rather than ensuring that555

every concept in the text of a character state is tagged with an ontology term (as is the case556
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for a concept-based Gold Standard, such as CRAFT (17)), we focused on generating EQ557

annotations that best represent the anatomical variation described in a character. Thus, in558

some cases, the EQ or EQs chosen for a particular character state may not include ontology559

terms in one-to-one correspondence with concepts described in the character. For example,560

the character state “parietal, entocarotid fossa, absent” was represented in a single EQ as561

E: ‘entocarotid fossa’, Q: ‘absent’. Parietal was not annotated because entocarotid fossa is562

the focus of the character, not the structure (parietal) that it is a part of. In addition, the563

domain knowledge that entocarotid fossa is part of the parietal is encoded in the Uberon564

anatomy ontology.565

Similarly, in some cases, character states describing the presence of a structure are not566

annotated directly in the Gold Standard. This is because presence can be inferred using567

machine reasoning on annotations to different attributes (e.g., shape) of the structure (53).568

In the following character state, for example, “Hemipenis, horns: present, multi-cusped”569

(34), the annotation in the Gold Standard consists of a single EQ phenotype: E: ‘horn570

of hemipenis’, Q: ‘multicuspidate’. The presence of ‘horn of hemipenis’ is inferred by the571

assertion describing its shape and did not require a separate EQ annotation.572

In other cases, “coarse” level annotations were used that did not include every concept in573

the character state due to limited expressivity in the EQ formalism. For example, take the574

character “Quadrate, proximal portion, lateral condyle separated from the medial condyle by575

a deep but narrow furrow”. This relates three entities (lateral condyle of quadrate, medial576

condyle of quadrate, furrow), which cannot be expressed using the current EQ template577

model in Phenex: (31). Instead, this character state was annotated coarsely as: E: ‘lateral578

condyle of quadrate’, Q: ‘position’, RE: ‘medial condyle of quadrate’579

More complex annotations can be made using a less restrictive annotation tool (e.g.,580

Protégé) rather than the EQ templates available in Phenex. However, allowing increased581

complexity when annotating in EQ format is likely to increase inter-curator variability. Pre-582

composed ontologies, i.e., phenotype ontologies, such as used by the HPO (54), could, how-583

ever, potentially decrease inter-curator variability because curators would be more likely to584

choose among existing terms rather than requesting a new one. Curators would also be aided585

by having access to existing, vetted annotations when creating new ones. Finally, provid-586

ing additional context for character descriptions, such as specimen illustrations or images,587

could greatly aid curators in capturing the original intent of a character. Although most588

publications do include illustrations or images for some characters, rarely is this done for all589

characters in a matrix.590

Finally, in some cases the Gold Standard annotations did not fully represent the knowl-591

edge (explicit or implicit) of a character due to limitations in the expressivity of OWL. For592
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example, in the character: “height of the vertebral centrum relative to length of the neural593

spine”, size is implicitly compared between two structures in the same individual. How-594

ever, such within-individual comparison cannot be fully represented using an OWL class595

expression (55).596

5.2 Inter-curator variation597

The goal of evaluating the performance of automated curation tools is to engineer and im-598

prove machine-based curation to assist human curation as effectively as possible. Phenotype599

curation relies on deep domain and ontology knowledge as well as on expert judgement.600

Semantics in character descriptions can be variably interpreted, creating an inherent inter-601

curator variability. Thus, to judge the performance of automated curation tools against602

humans, it is important to first understand the level of variation between human curators603

as well as the sources of that variation.604

As expected, we found considerable variation among human curators in our experiments.605

We observed that human curators achieved on average 54% of the maximum possible con-606

sistency as measured by Jsim, and 80% as measured by In (Figure 5). This variability607

in inter-curator similarity is within the range reported in previous studies (e.g., (56)), and608

likely reflects the complexity of annotation tasks requiring domain knowledge, the ability609

to navigate large ontologies, and experience and knowledge of annotation best practices.610

The inter-curator variability sets a ceiling for the maximum performance of a computational611

system if we assume that the human variability is primarily a consequence of the inher-612

ent ambiguity in how best to capture the semantics of the phenotype statement given the613

available ontologies.614

Much of the observed inter-curator variation could be assigned to a few general types of615

sources:616

• Curators choose different but related terms. For example, terms may be related through617

subsumption (e.g., ‘circular’ and ‘subcircular’ in PATO) or sibling relationships (e.g.,618

PATO:‘unfused from’ and ‘separated from’ )619

• Curators make differing decisions about how to post-compose entities. For example620

the entity for the character “lateral pelvic glands, absent in males“ was composed621

differently by the three curators as “gland and (part of some (lateral region and part of622

some pelvis))”, “lateral pelvic gland and (part of some male organism)”, and “male623

organism and (has part some (pelvic glands and in lateral side of some multi-cellular624

organism))”.625
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• Curators differ in how they composed an EQ even when choosing the same ontology626

terms. For example, two differently composed annotations for the character “pelvic627

plate semicircular, present” were E: pelvic plate and (bearer of some semicircular) +628

Q: present and E: pelvic plate + Q: semicircular.629

• Curators differ in how they added needed terms to the ontologies. For example, in the630

phenotype “dermal sculpture on skull-roof weak“, one curator created a new term “sur-631

face sculpting” and post-composed the entity “surface sculpting and (part of some der-632

matocranium)” as the ontological translation of the entity because “dermal sculpture“633

did not exist in the Uberon anatomy ontology. Another curator used PATO:‘sculpted634

surface’ to create a post-composed entity term “dermatocranium and (bearer of some635

sculpted surface)” to represent the same entity.636

5.3 Human–machine variation637

SCP achieved, on average, 37% and 66% consistency with human curators using the most638

comprehensive (merged) ontology, as measured by Jsim and In, respectively (Figure 5). This639

shows that the performance of SCP is significantly lower as compared to human inter-curator640

performance.641

5.4 Usefulness of semantic similarity for partial matches642

One of the major sources of annotation variation in either human or machine curators stems643

from choosing terms that are related to each other via subsumption or sibling relationships644

(see Section 5.2). Comparisons of curator annotations from this experiment show that, on645

average, only 26% of character-state comparisons are exact matches. Given that the majority646

of curator annotation pairs are partial matches, the use of semantic similarity metrics that647

can quantify different degrees of similarity proves to be important.648

5.5 Effect of external knowledge on inter-curator consistency649

and accuracy650

One of the major differences between human and machine annotation is that humans can651

access external knowledge during curation, while machines cannot, beyond the encoded652

knowledge they have access to (here in the form of ontologies). Our measures of semantic653

similarity agreed with the results of Cui et al. (11) in showing that access to external knowl-654

edge had no effect on inter-curator consistency and did not further differentiate them from655

SCP’s annotations. Further, similarity to the Gold Standard was not generally increased.656
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This was true despite the fact that curators changed annotations considerably between the657

Näıve and Knowledge rounds. Interestingly, while we expected a general increase in com-658

plexity when curators were at liberty to bring in additional knowledge, this was not borne659

out by the data.660

These results indicate that lack of access to external knowledge is not one of the fac-661

tors that contributes to SCP’s low performance with respect to human curators. This is662

encouraging, because lack of access to external knowledge during machine curation would663

be a challenge to remedy.664

5.6 Machine performance is improved as ontologies become665

more complete666

Our results indicate that using more complete ontologies can significantly improve machine667

performance (Figures 4 and 5). This is encouraging because ontology completeness is con-668

tinually improved through the synergistic efforts of the ontology and curator communities.669

This finding leads to specific ideas for how the curation workflow could be optimized by670

alternating execution of steps between human curators and algorithms. For instance, an671

initial round of machine curation would identify character states in the dataset for which672

good ontology matches were not found. Subsequently, human curators would judge whether673

the input ontology contains appropriate terms and focus on problem areas to add missing674

terms accordingly. Machines would then proceed with annotation using the human curator675

enhanced ontologies. Subsequently, human curators would review machine annotations and676

then either accept, modify, or re-curate them on a per-annotation basis. In such a workflow,677

machines would valuably augment the work of humans in the annotation process.678

5.7 Future Work679

5.7.1 Improving reasoning over EQ annotations680

One of the major challenges with EQ annotations is efficiently calculating semantic similarity681

metrics. Specifically, for virtually all metrics, the first step is to identify common subsuming682

classes. Although in theory an OWL reasoner can perform this task, it can only identify683

named classes that already exist in the ontology. A brute-force approach in which a composite684

ontology is computed as the cross-product of E ×Q×RE terms (for entity, quality, related685

entity; or even only E × Q) (57) would result in a background ontology too large even686

for efficient reasoners such as ELK, and the vast majority of its compound classes would687

not be needed as subsumers. Further work is needed to improve this method for efficiency688
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(computational time and memory) of the semantic similarity scoring.689

5.7.2 Improving Semantic CharaParser690

Cui et al. (11) identified a number of areas of potential improvement for SCP, and the691

present study further refines our understanding of where the machine curation is encountering692

obstacles. The observed shortcomings primarily fall in the areas of entity post-composition,693

the handling of relational qualities in annotations, and ontology searching in PATO. One694

way to improve the latter would be to enable the ontology search to locate multiple-word695

PATO qualities such as ‘posteriorly directed’, which in turn would allow more meaningful696

post-composed terms to be generated. And mentioned in Section 5.6, our results show that697

more comprehensive input ontologies will lead to improved performance of SCP.698

Conclusions699

The Gold Standard dataset for EQ phenotype curation developed herein is a high-quality700

resource that will be of value to the sizable community of biocurators annotating phenotypes701

using the EQ formalism. As illustrated here, the Gold Standard enables assessment of how702

well a machine can performs EQ annotation and the impact of using different ontologies for703

that task. At present, machine-generated annotations are less similar to the Gold Standard704

than those of an expert human curator. The continued use of this corpus as a Gold Standard705

will enable training and evaluation of machine curation software in order to ultimately make706

phenotype annotation accurate at scale.707
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