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Abstract
The supplementary information includes the methods of onion sample preparation and metabolomics analysis, annotation of onion features with xMSannotator, LC-MS/MS validation of PyC2-Gly in onions, R script used for annotation with xMSannotator, and MS/MS results for PyC authentic standards (PyC2-Gly, PyC3-Gly, PyC4-Gly) complexed with manganese and cadmium. 
Metabolomics of onions
Eight onions were selected for analysis. 100mg pieces of each onion were frozen at -80oC. Metabolites were extracted from onion samples using a Polytron homogenizer in 400µL extraction solution (2:1 acetonitrile to water) and homogenates were centrifuged for 10 minutes at 14,000rpms at 4oC. Metabolites in the supernatant were collected, loaded into auto-sampler vials, and run on a high resolution LTQ-Velos Orbitrap mass spectrometer (Thermo Fisher). Samples were analyzed in triplicate with a 10µl injection volume on a C18 column in positive electrospray ionization mode using a previously described method 
 ADDIN EN.CITE 

(1,2)
. The data were extracted using the R packages apLCMS and xMSanalyzer to provide a table of detected metabolites (mass spectral features defined by accurate mass (m/z), retention time (RT), and intensity profiles) 
 ADDIN EN.CITE 

(3,4)
. 
Annotation of onion data with xMSannotator

Feature tables were analyzed using xMSannotator and the multilevelannotation function with the custom database option as defined in the R script below. Based on the expected concentration and frequency of detected PyC lengths from previous research, a subset of the PyCDB was run with only PyC2 to PyC6, focusing on forms with one or no metals 
 ADDIN EN.CITE 

(5,6)
. xMSannotator allows accurate mass matching (Level 5 identification according to Schymanski et al. 2014) based on criteria such as correlation analysis, network modularity analysis, RT-based clustering, and mass defect analysis to assign confidence scores (0-3) to the annotations 
 ADDIN EN.CITE 

(7,8)
. Multiple adducts were considered (i.e., M+H, M+Na, M+K, M+2H, M+3H, M+NH4) with the M+H adduct required for the highest confidence level to be assigned. Using these parameters, 628 features were annotated using the PyCDB subset defined above. 
Validation of phytochelatin with MS/MS

MS/MS of m/z 538.1270 was completed on the LTQ-Velos Orbitrap. The identification was confirmed via MS/MS in positive mode using collision-induced dissociation at 35V on the LTQ-Velos Orbitrap. Validation of (S-S)PyC2-Gly with MS/MS was performed in two ways. First, MS/MS onion spectra were uploaded into MetFrag for matching 
 ADDIN EN.CITE 

(9,10)
. MetFrag links with PubChem, which has three phytochelatins in the database (PyC2-Gly, PyC3-Gly, PyC4-Gly) (11). From MS/MS spectra for m/z 538.1270, MetFrag returned a top match for (S-S)PyC2-Gly (C18H27N5O10S2). An example of a representative MS/MS spectra can be seen in Figure S-1B. As an authentic standard is available for PyC2-Gly, MS/MS analysis was performed on the LTQ-Velos Orbitrap to generate a reference spectra (Figure S-1A). Validation was also performed via matching of fragmentation patterns of the onion spectra (Figure S-1B) with the spectra of the PyC2-Gly authentic standard.  
Mass fragmentation analysis of PyC and PyC-metal complex standards
Analytical standards of PyC2-Gly (95% purity),PyC3-Gly (95% purity), and PyC4-Gly (95% purity)  were obtained from CPC Scientific Inc. CdCl2 and MnCl2 were obtained from Sigma-Aldrich. Individual stock solutions of PyC2, PyC3, CdCl2, and MnCl2 were prepared in HPLC-grade water. PyC2-Gly, PyC3-Gly and PyC4-Gly were prepared at 10µM. PyC-metal complex solutions were prepared in water at 10µM:10µM PyC to metal ratios and were analyzed with direct injection mass spectrometry using a LTQ-Velos Orbitrap mass spectrometer (Thermo Fisher).
R script for annotation of onion metabolites with xMSannotator
1) Read in PyCDB as custom database file:

PC_full<-read.csv("full_version_PyCDB_20180821.csv")

2) Create subset of PyCDB for query (optional):
PC_full$PCkeep<-ifelse((PC_full$PC.General %in% c("PC2","PC3","PC4","PC5","PC6"))  & (PC_full$Metal.Form %in% c("0","1")), 1,0)
PC2_PC6<-subset(PC_full, PC_full$PCkeep ==1)

3) Read in data table:

dataA<-read.table("~/PyC/FoodFiles/onion/C18/C18_Onion_Stage3b_filter.txt", header=TRUE)
4) Specify search parameters
max.mz.diff<-10  #mass search tolerance for DB matching in ppm

max.rt.diff<-10 #retention time tolerance between adducts/isotopes

corthresh<-0.7 #correlation threshold between adducts/isotopes

max_isp=5 #maximum number of isotopes to search for

mass_defect_window=0.01 #mass defect window for isotope search

5) Specify output location

outloc<-"~/PyC/FoodFiles/C18/onion_PyCDBpaper/"

6) Specify number of cores to be used 

num_nodes<-4   

7) Specify name of database to search against

db_name="Custom" 

status=NA 

customIDs<-NA 
8) Specify number of sets the total database entries should be split into for searches

num_sets<-300
9) Specify ionization mode and adducts for search

mode<-"pos" 
queryadductlist=c("M+2H","M+H","M+Na","M+K", "M+3H","M+NH4") 

10) Provide name of custom database to be used for annotation
customDB<-PC2_PC6
11) xMSannotator multilevel annotation function

#########################
dataA<-unique(dataA)

print(dim(dataA))

print(format(Sys.time(), "%a %b %d %X %Y"))

system.time(annotres<-multilevelannotation(dataA=dataA,max.mz.diff=max.mz.diff,max.rt.diff=max.rt.diff,cormethod="pearson",num_nodes=num_nodes,queryadductlist=queryadductlist,

mode=mode,outloc=outloc,db_name=db_name, adduct_weights=NA,num_sets=num_sets,allsteps=TRUE,

                                           corthresh=corthresh,NOPS_check=TRUE,customIDs=customIDs,missing.value=NA,deepsplit=2,networktype="unsigned",

                                           minclustsize=10,module.merge.dissimilarity=0.2,filter.by=c("M+H"),biofluid.location=NA,origin=NA,status=status,boostIDs=NA,max_isp=max_isp, customDB=customDB,                                 HMDBselect=NA,mass_defect_window=mass_defect_window,pathwaycheckmode="pm",mass_defect_mode="pos")

)

print(format(Sys.time(), "%a %b %d %X %Y"))
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Figure S-1. Matching MS/MS spectra of m/z 538.1272 [M+H] for PyC2-Gly authentic standard and onion samples (representative spectra shown). A) Fragmentation pattern for (S-S)PyC2-Gly [M+H] from the authentic standard sample using collision-induced dissociation (CID) at 25V B) Fragmentation pattern for (S-S)PyC2-Gly [M+H] from an onion sample using CID at 35V. 
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Figure S-2. Characteristics of the database. A) Number of compounds in database by phytochelatin length (i.e., repeating peptide units, n=2-11). With increasing phytochelatin length, the number of possible phytochelatins and phytochelatin-metal complexes increases. B) The most common isotope of metals of nutritional and toxicological significance are included in the database. 
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Figure S-3. MS1 spectra of PyC2-Gly authentic standard alone (A) and in combination with equimolar MnCl2 (B) or CdCl2 (C). (S-S)PyC2-Gly, oxidized form of PyC2-Gly; PyC2-Gly, reduced form of PyC2-Gly; PyC2-Gly-Mn, PyC2-Gly complexed with Mn2+ ion; PyC2-Gly-Cd, PyC2-Gly complexed with Cd2+ ion.
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Figure S-4. MS/MS of (S-S)PyC2-Gly, PyC2-Gly-Mn, and PyC2-Gly-Cd. A) Fragmentation pattern for (S-S)PyC2-Gly [M+H] (m/z 538.13) from the authentic standard sample using collision-induced dissociation (CID) at 25V, B) for PyC2-Gly-Mn [M+H] (m/z 593.07) from the authentic standard mixed with equimolar MnCl2 using CID25V, and C) for PyC2-Gly-Cd [M+H] (m/z 652.03) from the authentic standard mixed with equimolar CdCl2 using CID35V.
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Figure S-5. MS1 spectra of PyC3-Gly authentic standard alone (A) and in combination with equimolar MnCl2 (B) or CdCl2 (C). (S-S)PyC3-Gly, oxidized form of PyC3-Gly; PyC3-Gly, reduced form of PyC3-Gly; PyC3-Gly-Mn, PyC3-Gly complexed with Mn2+ ion; PyC3-Gly-Cd, PyC3-Gly complexed with Cd2+ ion.
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Figure S-6. MS/MS of (S-S)PyC3-Gly, PyC3-Gly-Mn, and PyC3-Gly-Cd. A) Fragmentation pattern for (S-S)PyC3-Gly [M+H] (m/z 770.18) from the authentic standard sample, B) for PyC3-Gly-Mn [M+H] (m/z 825.12) from the authentic standard mixed with equimolar MnCl2, and C) for PyC3-Gly-Cd [M+H] (m/z 884.09) from the authentic standard mixed with equimolar CdCl2 using collision-induced dissociation (CID) at 25V.
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Figures S-7. MS1 spectra of PyC4-Gly authentic standard alone (A) and in combination with equimolar MnCl2 (B) or CdCl2 (C). (S-S)PyC4-Gly, oxidized form of PyC4-Gly; PyC4-Gly, reduced form of PyC4-Gly; PyC4-Gly-Mn, PyC4-Gly complexed with Mn2+ ion; PyC4-Gly-Cd, PyC4-Gly complexed with Cd2+ ion; PyC4-Gly-Cd(2), PyC4-Gly complexed with two Cd2+ ions.
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Figure S-8. MS/MS of PyC4-Gly. Fragmentation pattern for PyC4-Gly [M+H] (m/z 1004.25) from the authentic standard sample using collision-induced dissociation (CID) at 25V.
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