December 6, 2019

0.1 Introduction

In this markdown, we re-analyze data from a published study on response of lung cancer cells to the tyrosine kinase inhibitor, erlotinib (PMID: 25404012). Erlotinib is used as a therapeutic agent in lung cancer patients who carry mutations in the epidermal growth factor receptor (EGFR). Patients initially respond well to the drug, but inevitably develop resistance. We focus on 243 phosphorylation sites in 194 proteins that were significantly upregulated by treatment with the EGFR ligand, epidermal growth factor (EGF), and downregulated by erlotinib. These sites are likely to be targets of EGFR-regulated pathways that are inhibited by drug treatment. We retrieve kinases for these sites from iPTMnet using iptmnetr and then compute some basic statistics on the results.

0.2 Retrieving Kinase Information

In this part, we retrieve kinases from iPTMnet for the EGFR/erlotinib-regulated sites using pyiptmnet, and write the table of kinase-site relationships to a file. The sites are listed in the file egfr_sites_formatted.txt. The input file has three tab-delmited columns: UniProtAC of the phosphorylated protein, amino acid residue of the phosphorylated site, and position of the phosphorylated site (e.g., P12345 S 100).

ptm_type

Phosphorylation

Phosphorvlation

site

Y1197

S457

site_position

\

1197

457

```
[1]: import pyiptmnet.api as api
```

```
[2]: kinase_info = api.get_ptm_enzymes_from_file("Supplementary Data 1.txt")
kinase_info = kinase_info.sort_values(by="enz_name")
kinase_info.head()
```

sub_id

P00533

Q53EL6

[2]: enz_name 20 ABL1 63 AKT1

					jj		
62	AKT	1 P31749	FLNC	Q14315	Phosphorylation	S2233	2233
60	AKT	1 P31749	EIF4B	P23588	Phosphorylation	S422	422
61	AKT	1 P31749	IRS1	P35568	Phosphorylation	S629	629
	score		nids				
20	3	neXtProt,	PSP,Signo	r 16943	3190		
63	3	neXtProt,	PSP,Signo	r 16357	133		

62 3 neXtProt,PSP 15461588

enz_id sub_name

EGFR

PDCD4

P00519

P31749

60 3 neXtProt,Signor 18836482

61 3 neXtProt,PSP 17640984

[3]: kinase_info.to_csv("Supplementary Data 2.txt", sep='\t')

0.3 Basic Statistics

Next, we compute:

- Number of kinase-site pairs
- Number of sites with at least one kinase
- Number of kinases
- Number of sites per kinase
- Number of kinases that phosphorylate three or more sites

```
[5]: #Find number of kinase-site pairs
num_kinase_site_pairs = len(kinase_info)
display(num_kinase_site_pairs)
```

118

```
[7]: #Find number of sites with at least one kinase
kinase_info["full_site"] = kinase_info["sub_id"] + " " + kinase_info["site"]
unique_sites = kinase_info.drop_duplicates(subset="full_site")
len(unique_sites)
```

[7]: 49

```
[8]: #Find number of unique kinases
unique_kinases = kinase_info.drop_duplicates(subset="enz_id")
len(unique_kinases)
```

[8]: 53

```
[9]: #Find number of sites per kinase
kinase_tally_sorted = kinase_info["enz_name"].value_counts()
kinase_tally_sorted
```

[9]: PRKCA 6 RPS6KB1 6 RPS6KA1 5 MAPK1 5 PRKCD 5 4 AKT1 EGFR 4 MAP2K2 4

CHEK1	4		
PRKACA	4		
MAP2K1	3		
AURKB	3		
МАРКЗ	3		
RPS6KA3	3		
PRKCE	3		
PLK1	3		
PRKD1	3		
PRKD3	2		
PRKCZ	2		
BRAF	2		
PAK2	2		
MAP3K8	2		
RPS6KA5	2		
CSNK2A1	2		
PRKCH	2		
JAK2	2		
ROCK1	2		
SRC	2		
IKBKB	2		
CAMK2A	2		
PDPK1	2		
MAPK14	1		
MAPK13	1		
AKT2	1		
ABL1	1		
MTOR	1		
MAPK8	1		
RET	1		
ROCK2	1		
RPS6KA4	1		
AURKA	1		
US3	1		
PKD1	1		
PASK	1		
MKNK1	1		
EEF2K	1		
LCK	1		
ΜΑΡΚΑΡΚ5	1		
PAK1	1		
INSR	1		
SGK1	1		
HCK	1		
PTK6	1		
Name: enz_na	ame,	dtype:	int64

```
[10]: #Find number of kinases that phosphorylate three or more sites
high_freq_kinases = kinase_tally_sorted[kinase_tally_sorted >= 3]
num_high_freq_kinases = len(high_freq_kinases)
num_high_freq_kinases
```

[10]: 17