
Supplementary Materials for:

Automatization and self-maintenance of the O-GlcNAcome catalogue:
A Smart Scientific Database

Supplementary Figures

Web Request Processing Schemesd

User
Nginx Gunicorn Django MongoDB

1: HTTPS Request

2: HTTP Request 3: Request for page

generation

4: PyMongo requests

5: Dynamic content (HTML)

6: Dynamic content (HTML)

7: Dynamic content (HTML)

8: Dynamic content (HTML)

9: GET associated

static content

10: Static content

(JS CSS IMG)

Figure S1: Unified Modeling Language (UML) [11] sequence diagram (sd) of the O-GlcNAc Database web request processing scheme.
Actor (human symbol), lifeline (horizontal rectangle), activation box (vertical rectangle), synchronous message (solid line) and reply
(dashed line) are highlighted per UML conventions. The numbering (1-10) represents the actual sequence of interactions and messages
from the actor HTTPS request (1) to the static content response (10).

1

NNet PDF-Set to Text-Setact

PMID PDF File

GNU pdftotext

Clean/Format text

«iterative»

Compare

: Text

For each

item

(match(item,Text)) True

False
Replace with Tag

Clean Stopchains

Section

delimiters Keepwords

Stopwords

Format Text

act

Shuffle PMIDs

Sets of PMIDs

FalseTrue

(Pattern

in Text)

Concatenate Training Set

Filter List

List of Patterns

: Set of PMIDs

«iterative»

PMID Text File

«iterative»

For each PMID

For each

Pattern

.append(0)

.append(1)

Binary PMID

Binary Sets

NNet Text-Set to Sample-Sets

Figure S2: Unified Modeling Language (UML) [11] activity diagram (act) of the NNet PDF-Set to Text-Set (left panel) and NNet
Text-Set to Sample-Sets (right panel) routine. Initial state (black circle), actions (rounded rectangle), list objects (rectangle), join
(bold bar), decision and merge (diamond) as well as final state (black circle) are highlighted per UML conventions. Accordingly, UML
expansion regions � iterative � represent for loop (left) or nested for loops instructions (right). Left panel: Initial state is a list of
PMIDs (n = 1 340) which represents a list of PDFs. For each PDF in list, the raw text is extracted using GNU pdftotext, cleaned
and appropriately formatted. For each item (word or regular expression) in the list (section-delimiters, stopwords or keepwords), the
condition (match item with text) is evaluated. If True, the current item is replaced by an appropriate tag. Sections of interest (title,
abstract, results and discussion) are extracted. Words in the text that were not tagged or contain a stop tag are removed to yield
period-separated expression patterns made of tags. The final state is a set of text files. Right panel: Initial state is a list of PMIDs
(n = 1 340) which represents a list of Text. This list is shuffled and sliced to obtain training (n/2), testing (n/4) and validation
(n/4) Text-Sets. Samples in the training set are concatenated to yield a dictionnary with expression patterns as keys and their count
as values. Patterns with count greater than a cutoff (c = 3) are then included in a list (length = 1 252). For each sample in each
set, the corresponding text is read. For each pattern in the list of patterns, the condition (pattern in text) is evaluated to 1 if True
and 0 if False, then the Boolean is appended to the input list describing the current sample. This input list, which is 1D array
(length = 1 252) containing Booleans, is then appended to the relevant training, testing or validation Sample-Sets. Each Sample-Set
in a 2D array of shape (m,1 252) with m the number of samples in a given set. The final state is the ensemble of training, testing
and validation Sample-Sets.

2

+ +
w

b

w

b

Input

(in)
Hidden Output Output

(out)

len(in) =

1252

96

Rectifier Linear Unit

ReLU

f(x) = max(0,x)

2

Logistic function

Sigmoid

f(x) = 1/(1+e-x)

Set := {

 {inSample0},

 {inSample1},

 {inSample2},

 ...,

 {inSampleN}

 }

Set := {

 {0.62,0.38},

 {0.92,0.08},

 {0.02,0.98},

 ...,

 {0.10,0.90}

 }

len(out) =

2

Figure S3: Matlab-style representation of the logistic binary classifier used to predict literature items containing information relative
to O-GlcNAc protein identification. The underlying NN and layers are highlighted with the input layer containing 1 252 nodes (green
square, left), the hidden layer containing 96 Rectifier Linear Units (ReLu) and the output layer with 2 nodes containing sigmoid
functions for a final output as a pair of probabilities such as [Ppositive,Pnegative]. The weight (w) and bias (b) conditions are shown
as well as the sum (+) operator applied before passing through functions from the hidden or output layers. In the diagram, we
indicate the direction of the control flow (green arrowhead).

3

NNet Train and Predictact

Binary SetsShuffle/Slice

: Subset

Training Subsets

«iterative»

For each

subset

Set of Parameters

Model Training

Testing Set

: Testing Set: Training Set

Best Test. Param.

«iterative»
For each

Param.

Binary Samples

Forward Propagation

Decision

Stacked DecisionsBernouilli

Prediction scores

: Sample: Param.

Training

Prediction

Figure S4: Unified Modeling Language (UML) [11] activity diagram (act) of the NNet Train and Predict routine. Initial state (black
circle), actions (rounded rectangle), list objects (rectangle), join (bold bar) as well as final state (black circle) are highlighted per
UML conventions. Accordingly, UML expansion regions � iterative � represent loop instructions. The initial state is a list of sets,
each containing samples (Sample-Sets), and of shape (n, in) with n the number of samples in a set and in the number of Boolean
or inputs (length = 1 252) which describe one sample. The training set (n = 670) is shuffled and sliced, yielding training subsets
(n = 355). For each training subset, the regression using a Neural Network designed as a logistic binary classifier proceeds. Weights
and bias parameters are saved on disk for the latest best accuracy monitored on the testing set during the regression on each training
subset. Series of parameters corresponding to independant models predicted sample labels within all training, testing and validation
sets. Corresponding decisions are aggregated and uncertainties computed using a binomial probability formalism. The aggregated
model is validated against the validation set and further predicted samples labels on newly published O-GlcNAc research articles.

4

<<navigationLink>>

<<navigationClass>>

HomePage

<<navigationClass>>

SubmitPage

<<navigationClass>>

CitePage

<<navigationLink>>

<<navigationClass>>

AboutPage

<<ProcessLink>>

<<navigationClass>>

OverviewPage

<<navigationClass>>

ConsensusPage

<<navigationClass>>

StatisticsPage

<<menu>>

O-GlcNAcylation

<<navigationLink>>

<<processClass>>

SubmitProteins

<<ProcessLink>>

<<navigationClass>>

SearchPage

<<index>>

ResultsList

<<query>>

EntrySearch

<<query>>

DatasetSearch

<<ProcessLink>>

<<ProcessLink>>

<<navigationClass>>

DownloadEntry

<<processClass>>

DownloadDigestion

<<processClass>>

SubmitComment

<<ProcessLink>><<navigationLink>>

<<navigationClass>>

DownloadFigures

<<navigationClass>>

DownloadData

<<navigationClass>>

DownloadFigures

<<navigationLink>>

<<navigationClass>>

ExplorePage

<<ProcessLink>>

<<processClass>>

FilterProteins

<<ProcessLink>>

<<navigationClass>>

DownloadEntry

<<navigationLink>>

<<navigationClass>>

ReferencesPage

<<processClass>>

FilterReferences

<<index>>

ResultsList

<<navigationClass>>

DownloadEntry

<<navigationClass>>

DownloadPage

<<menu>>

DownloadType

<<navigationLink>>

<<navigationClass>>

DownloadDatasets

<<navigationClass>>

ProteinEntry

<<index>>

ResultsList

<<navigationClass>>

ProteinEntry

<<navigationLink>>

<<navigationClass>>

LiteratureEntry

package Navigation [Navigation Diagram]

The O-GlcNAc Database

package Presentation [Presentation Diagram]

: ProteinEntry [*]

: UniProtKB

: FullName

: Score

: LinkOut

: Digest

: EntryName

: Organisms

: Sites

: Download

: Organism

: Sequence

: References

: Comment

: LiteratureEntry [*]

: Authors

: PMID

: Year

: Download

: Title

: Proteins

: Volume

: LinkOut

: Journal

: Organisms

: Issue

<<processClass>>

ContactForm

<<navigationClass>>

REST API Doc

*

* *

Figure S5: UML-based Web Engineering (UWE) [12] Navigation (main frame) and Presentation (bottom-right frame) diagrams of
the O-GlcNAc Database (oglcnac.mcw.edu). Static (lightgreen) and dynamic (magenta) navigation classes (*) are highlighted as
well as query types and filters (pink), result indexes (lightpink), download links (purple) and submission processes (yellow). In the
presentation diagram (bottom-right frame), the navigation classes "ProteinEntry" and "LitteratureEntry" are detailed to show the
attributes for each class (white).

5

Fetch Protein Infoact

UniProt ID Canonical

Proteins REST API

Get list of isoforms

: List of isoforms

«iterative»

Proteins REST API

Get Data

: Meta : Seq. : PTMs

Update Protein Entry

Fetch PMID Infoact

Puclication PMID

Pubmed metadata

Pubmed Abstract

Citation number

Authors Info

ProteomeCentral

Update PMID entry

Figure S6: Unified Modeling Language (UML) [11] activity diagram (act) of the Fetch protein info (Left panel) and Fetch PMID
info (Right panel) routines. Initial state (black circle), actions (rounded rectangle), list objects (rectangle), fork and join (bold
bars) as well as final state (black circle) are highlighted per UML conventions. Accordingly, UML expansion regions � iterative �
represent loop instructions. Left Panel: The action Proteins REST API refers to UniProtKB Protein REST API [50, 51]. Right
Panel: Pubmed metadata and abstract were retrieved using the Entrez Programming Utilities [52] wheras citation numbers and
authors information were obtained from Semantic Scholar API [41, 53]. Command-line tool cURL performed automated search on
ProteomeXchange [42] for each PMID.

6

Supplementary Tables

Library Source Use
copy Module Shallow and deep copy
csv Module Handling csv
datetime Module Handling dates
glob Module Unix shell style pathname as pattern expansion
gzip Module Compression and decompression
inspect Module Extract information from live objects
json Module Handling json
math Module Mathematical functions
operator Module Standard operators functions
os Module Operating system interfaces
random Module Pseudo-random numbers
re Module Regular expressions
shutil Module High-level file operations
sys Module System-specific functions
tempfile Module Handling temporary files
time Module Handling time
ansi2html Package Convert ansi to html
Biopython [54] Package Biological computation
json2html Package Convert json to html
logomaker Package Sequence logo
matplotlib [55] Package Plot data
numpy [37] Package High-level mathematical functions
pandas Package Data analysis and processing
pickle Package Read/write data as binaries
Pillow Package Handling images
Pygments Package Code coloring
PyMongo [21] Package Interactions with MongoDB
requests Package Handling GET and POST requests
wget Package Retrieving files using HTTP, HTTPS, FTP and FTPS
xlrd Package Handling xls
XlsxWriter Package Handling xlsx

Table S1: Python modules and libraries used in the O-GlcNAc Database system. Modules are Python built-in libraries whereas
Python package were downloaded from PyPI or GitHub. For security reasons, library versions are not indicated.

Theme Object Type Total Example Tagging scheme
Names List Litteral 262821 "Lisa" @_STOPWORDS_@
Journals List Litteral 140106 "Bioinformatics" @_STOPWORDS_@
Chemicals List Litteral 106967 "NaCl" @_STOPWORDS_@
Numerical/Units List Litteral 38147 "nmol" @_STOPWORDS_@
Cities List Litteral 23019 "Paris" @_STOPWORDS_@
Countries/States List Litteral 251 "Sweden" @_STOPWORDS_@
Custom List Litteral 69 "Figure" @_STOPWORDS_@
Biology List Litteral 567 "cell cycle" @_BIOLOGY_@_CELLCYCLE_@@
Glycobiology List Litteral 420 "glycolysis" @_GLYCOBIOL_@_GLYCOLYSIS_@@
Cells List Litteral 911 "HEK293" @_CELLS_@_HEK293_@@
Methods List Literal 131 "MALDI" @_METHODS_@_MALDI_@@
Pronominial List Litteral 1 "We" @_WE_@
O-GlcNAc List Regex 4 ([^\s]+(NAc)([^\s]+){0,1}) @_OGLCNAC_@_OGLCNACYLATED_@@
Description List Regex 5 ([^\s]+){0,1}(inhibit)([^\s]+){0,1}) @_DESCRIPT_@_INHIBITED_@@
Conclude List Regex 1 (show)([^\s]+){0,1} @_CONCLUDE_@_SHOWED_@@
Phospho List Regex 1 ([^\s]+{0,1}phorylat[^\s]+) @_PHOSPHO_@_PHOSPHORYLATED_@@
S/T-Sites List Regex 8 ([p]{0,1}[ST][\s]{0,1}[0-9]+) @_STSITES_@_S34_@@
Peptides List Regex 1 ([ARNDCQEGHILKMFPSTWYV]{5,}) @_PEPTIDES_@_ALIGRN_@@
Nucleic List Regex 1 ([ATGC]{5,}) @_NUCLEIC_@_ATGCA_@@
Amino-acids List Regex 40 ([Aa]la)(nine){0,1}([\s]{0,1}[0-9]+){0,1} @_AMINO_@_ALANINE_@@

Species Dictionnary Litteral 26070
(82396) {’HUMAN’:["Homo sapiens","Human"]} @_SPECIES_@_HUMAN_@@

Proteins Dictionnary Litteral 873434
(5679705)

{’P19332’:[’TAU’, ’Neurofibrillary tangle’,
’Microtubuleassociated protein tau’]} @_PROTEINS_@_P19332_@@

Table S2: List of literals, regular expressions (regex) and tags used in the NNet PDF-Set to Text-Set routine. The Object header
defines Python objects. Examples of items in objects are given under the Example header with the appropriate Python syntax. We
used the python re.sub() method with case-sensitive flag all stopwords-related themes as well as proteins and species (if expression
does not contain space), O-GlcNAc, S/T-Sites, peptides, nucleic and amino-acids. For all other themes and situations, we used
case-insensitive match. Tagging schemes are shown for each Theme, which includes parts conserved (black) and removed (gray) at
the end of the routine.

7

Set ID Samples Positive Negative
Dataset NA 1340 670 670
Training set NA 670 336 334
Training subset 1 335 168 167
Training subset 2 335 167 168
Training subset 3 335 167 168
Training subset 4 335 168 167
Training subset 5 335 168 167
Testing set NA 335 167 168
Validation set NA 335 167 168

Table S3: Sets of data and associated class distribution. The number of positive and negative samples in the whole dataset and in
each training, testing and validation sets are shown. Training subsets were iteratively generated by shuffling and slicing half of the
training set.

Function Return Output (filepath) Description
fetch_one_UniProtKB(id,filepath=None,pprint=True) Dictionary JSON Fetch UniProtKB Proteins REST API
fetch_one_oglcnacDB(id,filepath=None,pprint=True) Dictionary JSON Fetch The O-GlcNAc Database Proteins REST API
fetch_one_GlyGen(id,filepath=None,pprint=True) Dictionary JSON Fetch RESTful Glygen webservice-based API
fetch_one_PubMed(id,db="pubmed",filepath=None,pprint=True) Dictionary JSON Fetch MedLine/PubMed API using Entrez.efetch
fetch_one_SemanticScholar(id,filepath=None,pprint=True) Dictionary JSON Fetch Semantic Scholar API
fetch_one_proteomeXchange(id,filepath=None,pprint=True) Dictionary JSON Fetch proteomeXchange using GET search request
compute_one_fullDigest(id,protease,filepath=None) List JSON Full digestion of a UniProtKB ID protein sequence
compute_one_partialDigest(id,protease,filepath=None) List JSON Partial digestion of a UniProtKB ID protein sequence
compute_match_aaSeq(id,res,filepath=None) String Text atch residuePosition with UniProtKB ID protein sequence
compute_aln_log2odds(alnpath,organism=’HUMAN’,filepath=None) Dictionary JSON Compute log2odds for alignment file
draw_one_seqLogo(infile,filepath=None,showplot=True,center_values=False) None PNG Draw sequence logo from compute_aln_log2odds output file
pdf_one_pdf2text(pdfpath,filepath=None,clean=False) String Text PDF to Text conversion with text repair + cleaning.
show_proteases() List None Show list of proteases for digest utils
get_one_sequence(id,filepath=None) String Text Return protein sequence from UniProtKB ID
compute_one_MW(string,filepath=None) Tuple JSON Compute MW of a peptide
get_one_freqAAdict(organism=’HUMAN’,filepath=None) Dictionary JSON Compute amino-acids frequency table for a given organism
utilsovs_clearCache() None None Clear all data in utilsovs cache

Table S4: Overview of functions in the Python package utilsovs (v0.9.1b). For protein- and literature-related functions, id always
refers to UniProtKB identifier and PMID, respectively. The full package with documentation is available at
github.com/synthaze/utilsovs/.

8

Organism Latin name Proteins Sites
HUMAN Homo sapiens 7146 9336
MOUSE Mus musculus 3138 1392
TRYCR Trypanosoma cruzi Dm28c 930 0
TRYCR Trypanosoma cruzi 924 0
ARATH Arabidopsis thaliana 500 16
YEAST Saccharomyces cerevisiae 464 0
RAT Rattus norvegicus 447 409
TOXGV Toxoplasma gondii 306 0
TRYCR Trypanosoma cruzi marinkellei 184 0
DROME Drosophila melanogaster 110 27
TRIUA Triticum urartu 110 0
CAEEL Caenorhabditis elegans 68 66
BOVIN Bos taurus 65 7
WHEAT Triticum aestivum 60 2
XENLA Xenopus laevis 27 0
EHRRU Ehrlichia ruminantium 16 0
PLAFB Plasmodium falciparum 15 0
LACPL Lactobacillus plantarum 11 0
PIG Sus scrofa 9 2
HHV8 Human herpesvirus 8 6 9
CHICK Gallus gallus 4 3
CHLSB Chlorocebus sabaeus 2 0
CAPHI Capra hircus 2 0
SHEEP Ovis aries 2 0
CLOD6 Clostridioides difficile 2 0
CAMDR Camelus dromedarius 2 0
MACMU Macaca mulatta 2 0
RABIT Oryctolagus cuniculus 2 0
PPVRA Plum pox potyvirus 2 4
TOBAC Nicotiana tabacum 2 0
PORGI Porphyromonas gingivalis 2 0
MACFA Macaca fascicularis 1 0
TRIDC Triticum dicoccoides 1 0
RHEAM Rhea americana 1 0
ADE02 Human adenovirus C serotype 2 1 0
HCMVA Human cytomegalovirus 1 2
COTJA Coturnix japonica 1 0
CHLAE Chlorocebus aethiops 1 1
LISMO Listeria monocytogenes serovar 1/2a 1 0
TRITU Triticum turgidum 1 0
TRIMO Triticum monococcum 1 0
CANLF Canis lupus familiaris 1 1

Table S5: Number of O-GlcNAcylated proteins and sites. For each organism (UniProtKB ID, Latin name), numerical values for the
corresponding number of protein and sites entries are shown.

9

Supplementary Listings

Results indicate that SP1 is O-GlcNAcylated on serine 120 (1)

NUP62 is O-GlcNAcylated at residue T13 (2)

@_PROTEIN_@ @_OGLCNAC_@_OGLCNACYLATED_@@ @_STSITES_@ (3)

Listing S1: Example of translation from natural language to expression patterns. (1) and (2) are natural language sentences with
equivalent meaning but poor similarity. (3) is their common translation into expression pattern following our method.

import numpy as np

olr = 0.25 #Origin learning rate
ilr = olr #Initial learning rate
k = 0.05 #Decay rate
c = 100 #Cycling parameter
d = 0.95 #Descent parameter

def calc_lr(epoch,ilr):
#Effective epoch (e) relative to cycling (c)
e = epoch % c
#Effective learning rate
lr = ilr * np.exp(-k*e)
#Test if next cycle starts at next epoch
if (e+1) % c == 0:

#Reduction of ilr for first epoch of next cycle
ilr = d * ilr

return lr, ilr

Listing S2: Python variables and functions used for learning rate cycling in the NNet Training procedure. For each epoch, the
learning rate is computed. It exponentially decreases along e, which is the epoch relative to the current cycle. At the end of each
cycle, the initial learning rate decrease relative to the constant d.

~x = ([x1], [x2], ..., [xn]) (1)

p =
1

n
∗

n∑
i=1

xi (2)

p = p± 1.96 ∗

√
p(1− p)

n
(3)

Listing S3: Formalism for bootstrap aggregation of predictions from independant models of logistic binary classifier. (1) Ensemble
of decision series for each sample. (2) Average of decisions (n = 5) for one sample. (3) Error estimation for one sample to identify
ambiguous aggregated prediction.

PROTEIN,[add|remove],[PMID|Site] # Basic syntax scheme

O43823,add,30397120

O43823,add,S21

O43823,remove,S21

P10636,add,22366723,add,S185-8 # With assignment of alternative sequence

PROTEIN,[add|remove],[PMID|Site],[add|remove],[PMID|Site] # Combination PMID and Site in same instruction

O43823,add,30397120,remove,S21

PROTEIN,[add|remove],[PMID;PMID;PMID|Site;Site;Site] # Modification on multiple PMIDs and/or sites

O43823,add,S21;S207

PROTEIN,[delete] # Removal of one entry

O43823,delete

Listing S4: Example of CSV-like instructions in the update file parsed by our automated weekly update routine. Sites are assigned
to the canonical protein sequence by default and are validated by our quality control routine. Specific alternative sequences can be
assigned with the corresponding notation.

10

Supplementary Files

File 1: section-delimiters.tar.gz
Dictionnary of regular expressions to detect sections in publications.

File 2: stopwords.tar.gz
Lists of literals to identify and remove non-specific verbiage from PDF to raw text conversion.

File 3: keepwords.tar.gz
Lists of literals and regular expressions for strings of interest.

11

