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Supplementary Methods
Single-cell RNA-seq datasets
A total of 50 datasets are current publicly available in SCISSOR. All datasets were preprocessed using Seurat 3.0 for data normalization, scaling and dimension reduction. Default parameters were used in all steps if not specified below. In most datasets expect PBMC and COVID-19 datasets, cell types were identified by their original studies or following the same approach used in each study.
Cancers
We searched for scRNA-seq data for cancers in PubMed, GEO databases and several other databases. After filtering out data without cell type annotation, we finally obtained publicly available large-scale scRNA-seq datasets for 19 cancer types, including Colon cancer (GSE81861 (1), GSE146771 (2), GSE108989 (3), GSE178341 (4)), Head and neck squamous cell carcinoma (GSE103322 (5)), Breast cancer (GSE114725 (6)), Glioblastoma (GSE84465 (7)), Liver cancer (CNP0000650 (8), GSE140228 (9)), Bile duct cancer (GSE125449 (10)), Cholangiocarcinoma (GSE125449 (10)), Acute myeloid leukemia (GSE116256 (11)),  Melanoma (GSE72056 (12), GSE123139 (13)), Lung Adenocarcinoma (GSE131907 (14), E-MTAB-6149 (15)), Pancreatic cancer (GSE154763(16), CRA001160 (17)), Kidney cancer (GSE154763 (16), Young et al. (18)),  Lymphoma (heiDATA (19), GSE154763 (16)), Myeloma (GSE154763(16)), Uterine corpus endometrial carcinoma (GSE154763 (16)), Esophageal carcinoma (GSE154763 (16)), Ovarian cancer (GSE154763 (16), GSE158722 (20))), Thyroid carcinoma (GSE154763 (16)) and Squamous cell cancer (GSE144236 (21)).
Healthy brain and PBMC
SCANENR also prepressed and hosted two data sets from healthy human samples, including GSE67835 (22) (healthy human brain) and PBMC 3k dataset from 10X Genomics (https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/pbmc3k). The cell types in the PBMC dataset were identified based on the gene expression of known makers, including IL7R and CCR7 for Naïve CD4+ T cells, CD14 and LYZ for CD14+ Monocytes, IL7R and S100A4 for Memory CD4+ T cells, MS4A1 for B cells, CD8A for CD8+ T cells, FCGR3A and MS4A7 for GCGR3A+ Monocytes, GNLY and NKG7 for NK cells, FCER1A and CST3 for DC cells, and PPBP for Platelets.
Lungs of smokers and non-smokers
Three publicly available datasets from lung samples of smokers and non-smokers were preprocessed, including the dataset from bronchial epithelial cells, ALCAM+ epithelial cells and CD45+ white blood cells from six never and six current smokers (23), the dataset from lung tissue of one former smoker, two current smoker and five non-smokers) (24) and the dataset from lung tissue of one former smoker, one current smoker and three non-smokers (25).
Dendritic cells in upper airway, lower airway and peripheral blood samples from COVID-19 patients and healthy controls
scRNA-seq datasets of dendritic cells (DCs) in upper airway (nasopharynx/pharynx samples), lower airway (bronchoalveolar lavage fluid (BALF) samples) and peripheral blood (peripheral blood mononuclear cell (PMBC) samples) from COVID-19 patients and healthy controls were processed. The data characteristics and processing were described in our recent published study(26).

Gene set activity inference
Four approaches are available in SCANNER for inferring the relative activeness of a particular pathway, function or set of interested genes across cells. In one of all  cells, the activeness score  of an interested gene set, which has  genes, is calculated by,
· Average expression, that 

where  is the scRNA-seq normalized data of the -th gene. We used Seurat normalized read count in log scale in developing the smoking lung database.
· Average rank, that 

where  is the rank of the -th gene.
· Eigen-gene expression, which can be considered as a weighted average expression from a gene set. Briefly, the covariance matrix  of the gene set expression matrix is calculated by 

where  is the zero centered and unit variance scaled expression matrix of  size, where  is the number of cells and  is the number of genes of interest. Since the covariance matrix  is symmetric and positive definite, the eigenvalues of  are real and it can be diagonalized as 

where  is the eigenvector matrix and  is an eigenvalue matrix. The principal components (PCs) can be obtained by  and  is given by the first PC (PC1) which represents the most variation in the data. To reduce the effect of extreme values on SCANNER visualization, we constrain  within its 5th-95th percentiles.
· Gene set enrichment score, which is calculated using a similar strategy of single sample gene set enrichment analysis (ssGSEA) (27). For the gene set  of size  from all  genes in a sample, 

where  gives more weight on highly expressed genes, and  controls the degree of the weight. In this study, SCANNER set  which was typically used in the regular ssGSEA.
Current activity inference is available for MSigDB v.7.0 (28) gene sets of Hallmark Collection, KEGG Pathway, Biocarta Pathway, Reacome Pathway, GO Biological Process, GO Cellular Component, GO Molecular Function, Oncogenic Signatures and Immunological Signatures.

Data downsampling
SCANNER downsamples data to maintain a favorable computing speed and resource usage. Currently, maximum 500 cells for each cluster are selected by SCANNER using two approaches:
Random sampling: cells in each cluster are randomly selected.
Prediction ellipse: cells in an fitted ellipse which surround a particular cluster at a quantile of max(1,  are selected. The ellipse can be easily defined by its covariance matrix and vector of means in a low-dimensional space of scRNA-seq data, which is t-distributed Stochastic Neighbor Embedding (t-SNE) (29) embeddings currently used by SCANNER. The axis scales of ellipse were calculated using the square root of the eigenvalues of the covariance matrix and then the distance to ellipse can be solved. R Package “SIBER” was used for realizing this function. This method selects the core cells that are most distinct for each cluster.

Functions for above methods are available at https://github.com/GuoshuaiCai/scanner.
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Supplementary Figures
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Figure S1. SCANNER identify sex disparity in melanoma-associated fibroblast. The disparity is found in (A) cell cluster, (B) enrichment score of GO: fibroblast growth factor binding function, (C) enrichment score distribution and (D) enrichment score level and detection rate. Darker color indicates higher activity in (B) and (D) and a larger size indicates a higher detection rate in (D).  F: Female, M: Male.




[image: ]

Figure S2. Sex disparity in activeness of fibroblast growth factor binding. The disparity is found in GO: fibroblast growth factor binding function activeness inferred by (A) average expression, (B) average rank and (C) eigen-gene expression. Darker color indicates higher activity. The cell clusters with darker color in the F group are cancer-associated fibroblasts and Endothelial cells. F: Female, M: Male
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Figure S3. Sex disparity in expression of FGF1 and FGF2 expression. Darker color indicates higher expression. The cell clusters with darker color in the F group are cancer-associated fibroblasts and Endothelial cells. F: Female, M: Male.
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Figure S4. Sex disparity in expression of fibroblast growth factor binding related genes. Darker color indicates higher expression. Larger size indicates higher detection rate. F: Female, M: Male.
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Figure S5. SCANNER detected ACE2 expression in specific lung cells. Two datasets including (A) the GSE122960 dataset and (B) the Meyer dataset shows ACE expression (right panel) mainly expressed in pneumocytes, secretory cells and ciliated cells (left panel).
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