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Abstract

Chemical identification involves finding chemical entities in text (i.e., named entity recognition) and assigning

unique identifiers to the entities (i.e., named entity normalization). While current models are developed and

evaluated based on article titles and abstracts, their effectiveness has not been thoroughly verified in full

text. In this paper, we identify two limitations of models in tagging full-text articles: (1) low generalizability

to unseen mentions and (2) tagging inconsistency. We use simple training and post-processing methods to

address the limitations such as transfer learning and mention-wise majority voting. We also present a hybrid

model for the normalization task that utilizes the high recall of a neural model while maintaining the high

precision of a dictionary model. In the BioCreative VII NLM-Chem track challenge, our best model achieves

86.72 and 78.31 F1 scores in named entity recognition and normalization, significantly outperforming the

median (83.73 and 77.49 F1 scores) and taking first place in named entity recognition. In a post-challenge

evaluation, we re-implement our model and obtain 84.70 F1 score in the normalization task, outperforming

the best score in the challenge by 3.34 F1 score.
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Introduction

Chemical entities include drugs, compounds, chemical formulas,

identifiers, etc [1]. Extracting chemical entities from a vast

amount of literature is an essential step in various downstream

tasks such as relation extraction [2, 3] and literature search [4].

Chemical identification is a task to support this scenario, which

consists of (1) named entity recognition (NER) that locates

chemical entities in the provided text and (2) named entity

normalization (NEN or normalization) that links the entities

to unique identifiers predefined in biomedical knowledge bases.

Several datasets such as BC5CDR [5] are proposed to

facilitate research on chemical identification. Most consist of the

titles and abstracts of PubMed articles with manually annotated

chemical mentions and the corresponding identifiers. Recent

studies put a lot of effort into achieving high performance on

these abstract-level datasets in the NER [6, 7, 8] and NEN

tasks [9, 10]. However, there are few studies on tagging a

full-text corpus consisting of the main body of a paper as

well as the title and abstract. Since detailed descriptions of

background, methodology, and findings are mostly included in

the main body, automatically annotating the full text can be

more informative than annotating only the abstract.1

In this work, we conduct a systematic study of full-text

chemical identification. We analyze two limitations of current

models in tagging full-text PubMed articles. First, models’

generalizability to unseen entity mentions is limited [11],

especially when entities appear in the main body. Our pilot

experiment shows that the performance of an NER model on

unseen mentions in the main body is lower than those in

the abstract. Second, models make inconsistent predictions for

the same entities within the same article due to the tagging

inconsistency problem [6], which is worse in the main body than

in the abstract.

We suggest using two methods to address the limitations.

To improve the generalization ability of the model to unseen

mentions, we use transfer learning, where the model is pre-

trained on source data and then fine-tuned on the target data.

1 “title and abstract” and “abstract” are interchangeable.
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This exposes models to more diverse chemical entities and

contexts, improving entity coverage and generalizability. For the

source data, we use existing chemical NER datasets [1, 5] and

a synthetically generated dataset by synonym replacement [12].

To mitigate tagging inconsistency, we use a rule-based post-

processing method called mention-wise majority voting.2 The

method aggregates all inconsistent predictions for the same

phrase in an article and changes all minority predictions to

the majority, based on the assumption that (1) the majority

is more accurate than the minority and (2) the same words or

phrases within the same article refer to the same concepts (e.g.,

entities). Our experiments show the method effectively improves

NER performance despite its simplicity.

Additionally, we present a hybrid approach to improve

recall while maintaining precision in the normalization task.

Dictionary models usually achieve high precision but low recall

due to the limited coverage of their dictionaries, whereas neural

network models achieve higher recall but lower accuracy. We

attempt to leverage the strengths of both while compensating

for the weaknesses of each model. We first perform dictionary

lookup and then use a neural model to further predict entities

that do not match the dictionary. The hybrid model significantly

improves recall, resulting in strong normalization performance.

We experiment with our methods using the NLM-Chem

dataset [13], which consists of 150 full-text articles with chemical

entity annotations. Based on the experiments, we submit

our best models to the BioCreative VII NLM-Chem track

challenge [14] and obtain 86.72 and 78.31 F1 scores in NER and

NEN, significantly outperforming the median (83.73 and 77.49

F1 scores) and ranked first in NER. We found that our NEN

models were underestimated in the official challenge evaluation

due to implementation errors–After fixing the errors, we achieve

84.70 F1 score in NEN, surpassing the best score in the challenge

by 3.34 F1 score. In sum, we make the following contributions:

• We identify the limitations of existing models in terms of

full-text chemical identification: (1) low generalizability to

unseen mentions and (2) tagging inconsistency.

• We address the limitations using simple transfer learning and

mention-wise majority voting methods. For normalization,

we present a hybrid model combining dictionary and neural

models to achieve higher recall while maintaining accuracy.

• Our system significantly outperforms the median in the

official evaluation of the BioCreative VII NLM-Chem track

challenge and even achieves the best score in NER (86.72

F1 score). In the post-challenge evaluation, our hybrid

normalization model obtains the best score (84.70 F1 score).

Background

This section describes the background to understand the

task and our methodology. We deal with full-text chemical

identification as two separate tasks: NER and NEN. Specifically,

we train NER and NEN models independently and combine

them at the inference time. The NER model takes a sentence as

input and is optimized to predict each token in the sentence. The

NEN model uses the predictions of the NER model as input (i.e.,

2 While majority voting generally refers to an ensemble method

in the context of machine learning, in this paper, it refers to our
method for tagging consistency (Section 4.2).

Type # Articles # Sentences # Mentions # CUIs

Train 100 23,560 26,566 29,089

Valid 50 11,183 11,772 12,211

Test 54 17,703 22,942 25,316

Table 1. Statistics of the BioCreative VII NLM-Chem track challenge

data. The test set is only used in the official challenge evaluation.

# Articles: the number of articles. # Sentences: the number of

sentences. # Mentions: the number of annotated entity mentions.

# CUIs: the number of concept unique identifiers.

predicted entity mentions) and assigns them to corresponding

identifiers pre-defined in biomedical knowledge bases.

Named Entity Recognition

Let D = {D1, ...,DN} be a dataset, where N is the number

of documents in the dataset and each document Dn (n ∈
[1, N ]) consists of sentences. While entities are represented by

character-level start and end indexes in the sentence,3 they are

usually treated as token-level labels in practice since most entity

boundaries are per-token. In other words, we split the given

sentence into L tokens and feed it into an NER model ENER to

predict the label of each token as follows:

ŷ1, . . . , ŷL = ENER([x1, . . . , xL]), (1)

where xl and ŷl (l ∈ [1, L]) are the l-th token and the predicted

label. Following the BIO format [15], each label is assigned either

B (Beginning) or I (Inside) or O (Outside). Finally, contiguous

tokens with the first token corresponding to B and the others

corresponding to I are considered a predicted entity ê.

Normalization

Once the corpus is annotated by the NER model, an NEN model

then links the predicted mentions to pre-defined biomedical

identifiers. Each ê is fed into the NEN model ENEN, and the

model produces the identifier ĉ as follows:

ĉ = ENEN(ê,V), (2)

where V is a dictionary consisting of identifier-mention pairs.

The model ENEN searches the most similar entity in the

dictionary to the given mention ê and outputs the identifier of

the entity as the final prediction ĉ. While a dictionary model

performs string matching between the input mention ê and

candidate entities in the dictionary V, neural network models

convert them into dense representations and compute the vector

similarity between them [9, 10].

Full-text Dataset

Previous datasets for chemical NER and NEN have a limitation

in that they consist only of the title and abstract of the

paper [1, 5, 16]. Recently, Islamaj et al. [13] propose NLM-

Chem, the first large-scale dataset with manually annotated

chemical entity mentions and identifiers, consisting of 150 full-

text PubMed articles. The data is designed to be rich in chemical

entities that are difficult for models trained on other previous

chemical NER datasets to identify.

3 In a strict NER evaluation, models should predict the exact
character-level indexes during inference.
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Type Prec. Rec. F1 Mem Syn Con

Full 86.5 88.7 87.6 92.6 77.8 86.7

Abstract 87.6 89.2 88.4 93.3 80.6 87.7

Main Body 86.4 88.6 87.5 92.5 77.5 86.6

∆ -1.2 -0.6 -0.9 -0.8 -3.1 -1.1

Table 2. Performance of Bio-LM-large [17] on the abstract and main

body in the NLM-Chem validation set. Prec., Rec., and F1: entity-

level precision, recall, and F1 score, respectively. ∆: performance

difference. Note that we report only recall on Mem, Syn, and Con since

it is impossible to classify false positives into the splits, and precision

for each split cannot be calculated [11].

NLM-Chem challenge. BioCreative VII introduces a new

challenge, “NLM-Chem Track: Full-text Chemical Identification

and Indexing in PubMed articles” [14].4 The challenge presents

two tasks, but we focus on the Chemical Identification task in

this work and leave the Chemical Indexing task for future work.

In addition to 150 annotated articles in the original NLM-Chem

data, the Chemical Identification task provides additional 54

full-text articles manually annotated in a similar process when

constructing NLM-Chem. Table 1 shows the statistics of the

NLM-Chem and challenge data. We use the test set of NLM-

Chem (50 articles) as the validation set. The additional 54

articles are used for the official evaluation.

Preliminary Study

We determine whether a current model is sufficient or limited

in its ability to tag full-text articles. We focus on NER in

this analysis because a strong NER model is a prerequisite

for high normalization performance. We use the Bio-LM-large

model [17] with a linear output layer as the NER model. We

train the model on the full NLM-Chem training set and measure

the performance on the abstract and the main body of the

validation set separately. Table 2 shows the performance on

the main body is lower by 0.9 F1 score than that on the

abstract, indicating tagging full text is relatively challenging

compared to tagging only abstract. In the following sections,

we systematically analyze what factors make this difficulty.

Generalization to Unseen Mentions

In the biomedical domain, it is of paramount importance to

generalize unseen mentions that the model did not experience

during training because synonyms and newly discovered

biomedical concepts constantly emerge in the literature [11].

Since the main body contains more diverse entities and complex

context than the abstract, the generalizability issue [18, 19, 11]

can be critical in the main body. Follow Kim et al. [11], we

partition all mentions e in the NLM-Chem validation set into

three splits as follows:

Mem := {e : e ∈ Etrain, c ∈ Ctrain}

Syn := {e : e /∈ Etrain, c ∈ Ctrain}

Con := {e : e /∈ Etrain, c /∈ Ctrain} ,

(3)

where Etrain is the set of all entity mentions in the training set

and Ctrain is the set of all CUIs (Concept Unique Identifiers)

4 https://biocreative.bioinformatics.udel.edu/tasks/

biocreative-vii/track-2/

Type

Label

Inconsistency

Tagging

Inconsistency

Abstract 0.02 6.4

Main Body 0.04 9.7

Table 3. Label inconsistency and tagging inconsistency in the abstract

and main body of the NLM-Chem validation set.

in the training set. Specifically, Mem consists of memorizable

mentions that were seen during training. Syn consists of

synonyms, where their surface forms are new/unseen but their

CUIs are not. Con consists of new entities whose surface forms

and CUIs are both unseen. Each data split corresponds to one

of the recognition abilities that reliable NER models should

possess: (1) memorization, (2) synonym generalization, and (3)

concept generalization. We focus on the last two abilities that

are related to identifying unseen mentions.

Table 2 shows the performance on Syn and Con in the

main body is consistently lower than that in the abstract,

indicating that the model is limited in terms of generalizability

to unseen mentions. Interestingly, the performance difference

is very noticeable on Syn (3.1 F1 score). This may be because

entities are often represented in different ways throughout the

paper, especially in the main body.

Tagging Inconsistency

Since identical words or phrases within the same article often

refer to the same concepts or entities, models should be

consistent in predicting the same text spans. Unfortunately,

current sentence-level models classify the same spans into

different ones, which leads to the tagging inconsistency

problem [6, 20]. In this section, we measure how much

tagging inconsistency occurs in the abstract and main body,

respectively. Let Wn be all unique phrases (i.e., n-grams) within

the n-th article, gn(p) be the total number of a phrase p within

the n-th article, and hn(p) be the total number of positive

predictions for the phrase p within the n-th article. We consider

model prediction for the phrase p to be inconsistent if a function

ϕn returns 1, which is defined as follows:

ϕn(p) =

1 if gn(p) ̸= hn(p)

0 otherwise.
(4)

Finally, we calculate tagging inconsistency in the dataset D as

the average of inconsistent predictions for all unique phrases in

the corpus as follows:

1

N

N∑
n=1

 1

|Wn|
∑

p∈Wn

ϕn(p)

 . (5)

Similarly, we define label inconsistency by assuming that gn(p)

returns the total number of gold annotations for the phrase p

within the n-th article.

Table 3 shows that label inconsistency is insignificant,

supporting our assumption that phrases within the same

surfarce forms are likely to be the same entity (or not entity).

On the other hand, tagging inconsistency occurs frequently and

it is more pronounced in the main body than in the abstract,

indicating that it needs to be addressed to obtain satisfactory

performance in full-text chemical identification.

https://biocreative.bioinformatics.udel.edu/tasks/biocreative-vii/track-2/
https://biocreative.bioinformatics.udel.edu/tasks/biocreative-vii/track-2/
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{positive: 5, negative: 4}

Title: The small molecule curcumin analog FLLL32 induces 

apoptosis in melanoma cells via STAT3 inhibition and retains the 

cellular response to cytokines with anti-tumor activity

Abstract: … FLLL32 specifically reduced STAT3 phosphorylation 

… FLLL32 treatment reduced expression of STAT3-target genes, …

FLLL32 displayed specificity for STAT3 … other STAT3 pathway 

inhibitors (WP1066, JSI-124, Stattic), FLLL32 did not abrogate 

IFN-γ-induced pSTAT1 … In addition, FLLL32 did not adversely 

affect the function or viability of immune cells … FLLL32 inhibited 

IL-6-induced pSTAT3 … Treatment of PBMCs or natural killer (NK) 

cells with FLLL32 also did not decrease viability … These data 

suggest that FLLL32 represents a lead compound …

Before

Title: The small molecule curcumin analog FLLL32 induces 

apoptosis in melanoma cells via STAT3 inhibition and retains the 

cellular response to cytokines with anti-tumor activity

Abstract: … FLLL32 specifically reduced STAT3 phosphorylation 

… FLLL32 treatment reduced expression of STAT3-target genes, …

FLLL32 displayed specificity for STAT3 … other STAT3 pathway 

inhibitors (WP1066, JSI-124, Stattic), FLLL32 did not abrogate 

IFN-γ-induced pSTAT1 … In addition, FLLL32 did not adversely 

affect the function or viability of immune cells … FLLL32 inhibited 

IL-6-induced pSTAT3 … Treatment of PBMCs or natural killer (NK) 

cells with FLLL32 also did not decrease viability … These data 

suggest that FLLL32 represents a lead compound …

After

Fig. 1: The tagging inconsistency problem and our majority

voting method. We highlight positive and negative predictions

for the entity “FLLL32” in blue and yellow, respectively. Our

method improves tagging consistency by changing the minority

(yellow) to the majority (blue).

Method

From our analysis, we identified low generalizability to unseen

mentions and tagging inconsistency as obstacles to tagging

full-text articles. We use transfer learning and mention-wise

majority voting methods to address them. In normalization,

we use a hybrid model to improve recall using a neural model

while maintaining high precision of a dictionary model. See the

paper [21] for a simpler system description.

Transfer Learning

We pre-train a model on source data and then fine-tune it

on the target data (i.e., NLM-Chem). Since pre-training with

additional datasets exposes models to more diverse chemical

entities and contexts, this can improve the generalizability. We

use two popular chemical NER datasets CHEMDNER [1] and

BC5CDR [5] as the source data. At the fine-tuning stage, we

randomly initialize the output layer and only reuse the rest of

the model parameters.

Data augmentation. Dai et al. [12] augment training data

by replacing entity mentions with their synonyms. This

allows the model to learn different representations of entities,

which can help improve generalizability to morphological

variations. Following the work, we generate the new

synthetic data NLM-Chem(syn) by replacing the mentions in

NLM-Chem with their synonyms, which are sampled from

the Comparative Toxicogenomics Database. We use NLM-

Chem(syn) as additional source data for transfer learning.

Majority Voting

To alleviate tagging inconsistency, we use a majority voting

method that aggregates model predictions in full text (Figure 1).

First, we collect all inconsistent predictions in the same article,

where the inconsistency is defined by Equation (4). We then

compute the majority for model predictions and change all the

minority predictions to the majority. Luo et al. [6] used a similar

post-processing method to ours in their work, but the method

only changes negative predictions to positives, which might be

detrimental to precision. On the other hand, we also consider

the direction from positives to negatives, which reduces false

positives and improves precision. Since majority voting can be

noisy if the target phrase does not frequently appear in the

article, we apply the method only when the number of the

phrase is greater than a threshold τ .

Hybrid Model

Hybrid model consists of a dictionary model and a

neural network model. The dictionary model first performs

normalization based on string matching between the target

mentions and the dictionary after applysing several pre-

processing rules such as lowercasing and removing punctuation.

For mentions that are not normalized by the dictionary model,

the neural model further performs the process. The neural

model retrieves top-k similar entities to the given mention from

the biomedical dictionary V. To deal with the CUI-LESS class,

which means that a given entity does not match any CUIs in the

dictionary, we add a special embedding and classify mentions

into the class if the embedding is included in top-k results.

Experiments

Evaluation

We evaluate our models in the BioCreative VII NLM-Chem

track challenge. For NER, entity-level precision (Prec.), recall

(Rec.), and F1 score (F1) are used. For normalization, unique

CUI predictions and labels for each article are compared

first, and then precision, recall, and macro-averaged F1 score

are calculated based on the article-level true positives, false

positives, and false negatives [13, 14].

Implementation Details

We select Bio-LM-large [17] as our NER model for its superiority

compared to others (See Table 6). For NER, we search best

checkpoints and hyperparameters of NER models, based on

F1 score on the validation set at every training epoch. We

further trained NER models on the validation set by 20 epochs

for the final submission. The max length of input sequence

is set to 512. We use the batch size of 24 and the learning

rate of 1e-5. In synonym augmentation, NLM-Chem(syn) is

3x larger than the original data. For the majority voting

method, we only use entities that are longer than 2 and

appear more than 40 times in the same article (i.e., τ =

40). For normalization, we use the April 1st, 2021 version

of the Comparative Toxicogenomics Database as our chemical

dictionary. We further expand the dictionary using mentions

annotated in NLM-Chem. For the neural model, we train

BioSyn [9] with the SapBERT encoder [10] on NLM-Chem using

the same hyperparameters as suggested by the authors. We
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NLM-Chem

BC5CDR

CHEMDNER

NLM-Chem(syn)

Majority 

Voting

Dictionary

Model

Neural

Model

Model Ensemble

NER

Results

(Ensemble)
NER 

Results

Hybrid Model

NENNERTrained Models

Full-text

Article

Fig. 2: Overview of our final system for the BioCreative VII NLM-Chem track challenge.

Team NER Team NEN

(Run) Prec. Rec. F1 (Run) Prec. Rec. F1

139 (3)† 87.59 85.87 86.72 110 (4) 86.21 77.02 81.36

139 (1)† 87.47 85.23 86.33 128 (2) 77.92 84.34 81.01

139 (2)† 87.75 84.47 86.07 110 (1) 85.82 76.41 80.84

128 (1) 85.44 86.58 86.00 128 (1) 78.33 83.39 80.78

143 (1) 85.35 86.08 85.71 121 (1) 78.74 82.81 80.72

128 (4) 84.57 86.17 85.36 121 (3) 78.76 82.72 80.69

128 (2) 86.43 84.03 85.21 110 (2) 82.21 78.98 80.56

121 (2) 84.61 85.83 85.21 128 (4) 77.55 83.18 80.27

121 (1) 86.16 84.15 85.15 121 (2) 77.48 83.15 80.21

121 (3) 85.80 84.09 84.94 121 (5) 78.21 82.26 80.19

Median 84.76 81.36 83.73 Median 71.20 77.60 77.49

Table 4. Top ten models and the scores in the official challenge

evaluation. †: our models. The best scores in the table are underlined.

See the challenge overview paper [14] for a full list of results.

search for the best neural NEN model checkpoints using F1

score in the validation set.

Sub-token entities. The NLM-Chem data has many sub-token

entities that are sub-strings of a token rather than the whole

string. For example, the token “Gly104Cys” has two sub-

token entities “Gly” and “Cys.” In the official evaluation of

the challenge, models should predict sub-token entities, not the

whole tokens. We found that sub-token entities mostly appear

within mutation names, and about 90% of sub-token entities

can be processed with simple regular expressions. Based on this,

we perform post-processing on sub-token entities, which greatly

improves performance in the official evaluation.

Final submission. Ensemble methods theoretically reduce

expected generalization errors by reducing the variance. To

boost the performance in the challenge evaluation, we build

majority voting ensemble models that combines predictions

from different models trained on different datasets (See Table 7).

For NEN, we use a single hybrid model. Figure 2 illustrates our

final system for the challenge.

Results

Table 4 shows top ten submission results in NER and NEN,

respectively. In NER, our top three systems significantly

outperformed the median and other 88 submission results from

17 teams and ranked 1st, 2nd, and 3rd, respectively. On the

other hand, our systems did not make it into the top ten in

NEN despite high performance in NER. After the challenge, we

Official Corrected

Run Prec. Rec. F1 Prec. Rec. F1

1 72.12 84.71 77.91 85.39 83.27 84.32

2 72.56 85.05 78.31 85.80 83.64 84.70
3 71.20 84.99 77.49 85.42 83.49 84.44

Table 5. Performance of our NEN models on the test set. The best

scores are underlined. Note that “corrected” models were unofficially

evaluated after the challenge was over, but on the same test set.

Model Vocab. Corpus Size F1

BioBERT [8] Wiki+Books Abstract Base 84.8

PubMedBERT [23] PubMed Abstract Base 87.2

PubMedBERT(full) [23] PubMed Full text Base 87.4

Bio-LM-base [17] PubMed Full text Base 87.0

Bio-LM-large [17] PubMed Full text Large 87.6

Table 6. Differences between biomedical pre-trained language models.

Vocab. and Corpus: the vocabulary and corpus type used in pre-training,

respectively. The Bio-LM-large is the best in our experiment.

found some errors in our implementation of the normalization

model, which significantly degraded the performance. Thus, we

re-evaluate the NEN performance on the test set published after

the challenge. As shown in Table 5, we achieved 84.70 F1 score

after fixing the errors, which is higher than the best score in

the challenge by 3.34 F1 score. From these results, we can

conclude that the hybrid model is promising for future practical

applications. Consistent with our results, a concurrent work

shows the hybrid approach improves the performance [22].

Analysis

Language Model Selection

We experiment with several pre-trained language models

common in the biomedical domain to select the best sentence

encoder in NER: BioBERT [8], PubMedBERT [23], and Bio-

LM [17]. As shown in Table 6, Bio-LM-large outperforms

the other models. Although BioBERT usually performs

well on many tasks and achieves similar performance with

PubMedBERT and Bio-LM, it performed much worse on

NLM-Chem. Differences in vocabulary may have a significant

impact on chemical NER performance. Also, PubMedBERT-full

performed better than PubMedBERT, indicating that pre-

training on full-text articles may be effective for chemical
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Model Prec. Rec. F1

Single model

Standard 86.5 88.7 87.6

+ BC5CDR 86.0 (-0.5) 89.4 (+0.7) 87.7 (+0.1)

+ CHEMDNER 86.5 89.5 (+0.8) 88.0 (+0.4)

+ NLM-Chem(syn) 86.7 (+0.2) 89.3 (+0.6) 88.0 (+0.4)

Ensemble model

Fine-tune only 86.8 (+0.3) 89.2 (+0.5) 87.9 (+0.3)

Transfer only 87.2 (+0.7) 89.9 (+1.2) 88.5 (+0.9)

Both 87.2 (+0.7) 89.6 (+0.9) 88.4 (+0.8)

Ensemble model (with majority voting)

Fine-tune only 87.3 (+0.8) 89.6 (+0.9) 88.4 (+0.8)

Transfer only 87.6 (+1.1) 90.1 (+1.5) 88.8 (+1.2)

Both 88.0 (+1.5) 89.8 (+1.1) 88.9 (+1.3)

Table 7. Ablation study for NER on the validation set. Standard:

a single Bio-LM-large model. Performance differences between the

standard and other models are shown in parentheses.

85.3

87.1

88.1 88
87.8 87.8

87.6

85

86

87

88

89

Majority Tagging

Standard

87.6

0 20 40 60 80 330100 …

Threshold of Occurrence

F
1

 S
co

re

Voting

Fig. 3: Performance of majority voting with different the

threshold of occurrence τ on the validation set. Standard: a

single Bio-LM-large model.

NER at the full-text level. Bio-LM-large performed better than

Bio-LM-base, showing that model size can affect performance.

Ablation Study

Effect of transfer learning. Table 7 shows transfer learning

improved models’ performance, especially recall. Although the

synonym replacement method does not require the cost of

manual annotations, it can be more effective than using existing

hand-labeled datasets.

Effect of model ensemble. Table 7 shows that ensemble

models outperform single models. Besides, we analyzed how

the effect of ensembling varies according to the combinations

of single models. We designed three ensemble models, “Fine-

tune only,” “Transfer only,” and “Both,” which indicate the

combination of models trained only with NLM-Chem, the

combination of only transferred models, and the combination

of both types of models, respectively. As a result, we found that

ensembling models trained on different sources can be effective.

Effect of majority voting. Table 7 shows that majority voting

is simple but consistently improves the performance of ensemble

Model Prec. Rec. F1

Dictionary 94.4 83.8 88.8

Neural 83.9 88.4 86.1

Hybrid 91.6 87.2 89.3

Table 8. Ablation study for NEN on the validation set. Gold NER

annotations are used as input in this experiment.

Model Syn Con

Standard 72.9 86.9

Transfer 74.9 86.6

Syn: 1,629

Con: 3,057

Mem:

7,086
22,687

(a) NLM-Chem training + BC5CDR

Model Syn Con

Standard 76.0 86.7

Transfer 78.2 88.5

Syn: 1,423

Con: 3,749

Mem:

6,60099,514

(b) NLM-Chem training + NLM-Chem(syn)

Fig. 4: The number of mentions of Mem, Syn, and Con, and

model performance on each split, when using BC5CDR and

NLM-Chem(syn) as source data in transfer learning. The blue

circles indicate the mentions in the validation set, and the

others are the mentions in training sets (i.e., Etrain). Standard

and Transfer: Bio-LM-large without/with applying transfer

learning, respectively.

models. Also, we see how the performance of the single Bio-LM-

large model changes when changing the threshold of occurrence

τ . Figure 3 shows the performance peaks at τ = 40 and

decreases, indicating that finding the optimal τ is important.

Effect of hybrid model. As shown in Table 8, the dictionary

model works very well in normalization if we have a high-

quality dictionary. However, the method has low recall due

to the limited coverage of the dictionary. Our hybrid model

significantly improved recall, resulting in a higher F1 score.

In-depth Analysis

We pointed out the two limitations of existing models that

hinder tagging full-text articles. We confirmed transfer learning

and majority voting improve the overall performance in Table 7

and Figure 3, but further analysis is needed to figure out the

effect of the methods in depth.

Q1. Does transfer learning actually improve generalization

ability to unseen entities? Table 7 showed transfer learning

improves model performance, especially recall. Furthermore,

we see whether this performance improvement was achieved

by simply increasing entity coverage during training, or by

improving true generalizability to unseen entities. A way

of measuring generalizability is to split the dataset as in

Equation (3) and compare performance of a model with/without
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Model Prec. Rec. F1 Mem Syn Con

Abstract

Standard 87.6 89.2 88.4 93.3 80.6 87.7

Majority 87.7 89.5 88.6 94.0 80.6 87.7

∆ +0.1 +0.3 +0.2 +0.7 0.0 0.0

Main Body

Standard 86.4 88.6 87.5 92.5 77.5 86.6

Majority 86.9 89.1 88.0 93.5 77.5 86.4

∆ +0.5 +0.5 +0.5 +1.0 0.0 -0.2

Table 9. Detailed analysis on majority voting using the validation set.

Standard and Majority: Bio-LM-large without/with the majority voting

method, respectively. ∆: performance difference.

applying transfer learning on Syn and Con, where the set

of mentions Etrain and the set of CUIs Ctrain include

the NLM-Chem training set and a source dataset used in

transfer learning scenarios. Figure 4 shows the number of

mentions of Mem, Syn, and Con of the validation set and

the model performance, when source data is BC5CDR and

NLM-Chem(syn). Regardless of source datasets, performance

on Syn is improved, indicating transfer learning can improve

generalizability to synonyms. From these results, we confirm

that the performance improvement is not simply due to

increased entity coverage.

Q2. When is majority voting particularly effective? The

method is particularly effective when there are many mentions

of the same entity in one article, and there is severe tagging

inconsistency. For instance, the article with PMID 2902420 has

137 mentions of the entity “FLLL32,” and models predicted

about 70% of the mentions as entities and the rest as not. In this

case, the method corrected about 30% errors, which significantly

improves performance. Also, Table 9 shows that majority voting

is particularly effective in the main body, where the problem is

much more severe than in the abstract.

Q3. Can majority voting improve generalization ability

to unseen entities? Since recognizing unseen mentions is

more difficult than recognizing memorizable mentions, tagging

inconsistency will occur more for unseen mentions. It will be

interesting to see if majority voting can effectively mitigate

tagging inconsistency for unseen mentions. As shown in Table 9,

while the method significantly improved performance on Mem, it

was not effective on Syn and Con. Since recall on unseen entities

(i.e., entities in Syn and Con) is insufficient, the majority may

be false negatives, and thus the method may not be as effective.

Error Analysis (NER)

We analyze 100 error cases of our NER model using the test set.

Reoccurrence of the same errors. We found that the model

repeated the same errors within the same article. For instance,

5% of the whole error cases occurred since the model failed

to extract the entity mention “pKAL” (the Korean plant

Artemisia annua L.). Majority voting can be effective against

these repeated errors if the majority predictions are correct and

are greater than the minority repeated errors. However, since

the model predicted all occurrences of “pKAL” as negative,

majority voting could not correct the repeated errors, which

is a limitation of the method.

Abbreviations. 40% of errors are due to abbreviations. It

is challenging to deal with abbreviations as their names are

ambiguous and have less information. The full names of

abbreviations are often defined in the front parts of the paper

such as the abstract or introduction, thus in further work, we

can utilize these definitions to help identify abbreviations.

Other insights. The model sometimes made unexpected

predictions including special characters, and these false positives

accounted for 6% of all errors. For instance, the model

predicted “APO(” as an entity given the context ‘The stability

of APO(ANTR) nanodrugs was tested by storing them at 4

C for 30 days.,‘ while the model correctly extracted “APO”

in most other contexts. Also, the model sometimes did not

extract the entire entity “Mg-PCL”, rather it extracted “Mg-

” and “PCL” separately. Many chemical entities are composed

of complex combinations of alphabets and special characters,

making it difficult for the model to distinguish exact boundaries.

The model appears to be sensitive to even small changes

in entity forms. We found the model successfully extracted

the entity “11Cha1” but failed to extract other entities with

similar forms, such as “11Cha2,” “11Cha3,” “11Cha10,” and

“11Cha11,” even when they appeared in the same sentence

‘Less hindered groups on ring A such as hydroxyl, methoxyl,

and/or methoxymethoxyl (MOM) (e.g., 11Cha1, 11Cha2, and

11Cha3) increased the activity.’ It seems that the model lacks

the ability to understand sentence structure or context pattern.

Such ability should be improved by developing better language

models or incorporating syntactic information into the model.

Error Analysis (NEN)

We manually analyze 300 error cases from the test set. The

most common errors (71.3%) occurred due to limited coverage

of the dictionary, and so the model incorrectly predicted

entity as CUI-LESS. The second type of error, accounting for

14.3%, occurred when the model was misled by entities with

similar forms to a target entity. For instance, the target

entity “polyamide” and a synonym “nylon” are not similar

even though they are the same entity, so the model chose a

more similar entity “polymer.” Finally, some entity mentions

with the same surface form can have different CUIs depending

on the context, producing 14.3% errors. For instance, while

“DHA” in a test article refers to “Docosahexaenoic Acid,” in

the dictionary, “DHA” refers to “Dihydroartemisinin,” making

a false prediction.

All types of errors we mentioned above can be addressed

by using contextual information. Our model relies on surface

forms of mentions to perform the task, which limits the

NEN performance. Adopting recent models using contextual

information [24, 25] to full-text chemical normalization would

be interesting, and we leave this for future research.

Conclusion

In this paper, we studied chemical identification in full-

text articles. We found that low generalizability to unseen

entities and tagging inconsistency are problems and should

be considered to effectively perform the task. We showed

that the problems are addressable using transfer learning and

mention-wise majority voting. Also, we showed that combining

dictionary and neural models is effective for normalization. We
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demonstrated the effectiveness of all methods using the NLM-

Chem dataset through ablation studies and achieved strong

performance in the BioCreative VII NLM-Chem track challenge.
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