
TFLink use case 1
Network visualisation of the common target genes of two transcription factors

1 The aim of this use case

Here we want to check and visualise the common target genes of two transcription factors. We describe how
to find transcription factors which share common target genes. We create a transcription factor - target gene
interaction graph of the STAT5A and STAT5B transcription factors using the igraph R package. We also
show how to create the same transcription factor - target gene interaction graph by using the Cytoscape
software.

2 Input data

Let’s download the human (Homo sapiens) interaction table including all (small- and large-scale) interactions
from the Download part of the TFLink website, and read it in with the fread command of the data.table
package that reads huge tables effectively. We also will use the tidyverse package.

library(data.table)
library(tidyverse)
Interaction_tab <- fread("TFLink_Homo_sapiens_interactions_All_simpleFormat_v1.0.tsv")

Let’s see the first few rows of the interaction table.

Interaction_tab %>%
slice(1:5)

Head of interaction table (continued below)

UniprotID.TF UniprotID.Target NCBI.GeneID.TF NCBI.GeneID.Target Name.TF Name.Target Detection.method

Q9H9S0 O94907 79923 22943 NANOG DKK1 chromatin
immunoprecipita-
tion assay;inferred

by curator
P37231 P10826 5468 5915 PPARG RARB chromatin

immunoprecipita-
tion assay;inferred

by curator
P10242 P08047 4602 6667 MYB SP1 chromatin

immunoprecipita-
tion assay;inferred

by curator
P31269 Q02363 3205 3398 HOXA9 ID2 inferred by

curator

1

https://cytoscape.org/
https://tflink.net/download/

UniprotID.TF UniprotID.Target NCBI.GeneID.TF NCBI.GeneID.Target Name.TF Name.Target Detection.method

P03372 P17275 2099 3726 ESR1 JUNB chromatin
immunoprecipita-
tion assay;inferred

by curator

PubmedID Organism Source.database Small-scale.evidence

19148141;29087512;29126285;27924024 Homo sapiens GTRD;ReMap;TRRUST Yes
17202159;12839938;29087512;27924024 Homo sapiens GTRD;TRED;TRRUST Yes

29126285;27924024;17202159 Homo sapiens GTRD;ReMap;TRED Yes
29087512;20565746 Homo sapiens TRRUST Yes

29126285;18971253;27924024;11477071;17202159;29087512 Homo sapiens GTRD;PAZAR;ReMap;TRED;TRRUST Yes

3 Checking the number of target genes each transcription factor
has

Let’s see the distribution of number of target genes among transcription factors.

Interaction_tab %>%
group_by(UniprotID.Target, `Small-scale.evidence`) %>%
summarise(`Nr. of TFs regulates the target gene` = n()) %>%
arrange(desc(`Nr. of TFs regulates the target gene`)) %>%
ggplot(aes(x = `Nr. of TFs regulates the target gene`,

fill = `Small-scale.evidence`)) +
geom_histogram(binwidth = 50) +
theme_minimal()

0

2000

4000

0 250 500 750
Nr. of TFs regulates the target gene

co
un

t Small−scale.evidence

No

Yes

4 Transcription factors having up to 50 target genes

To be able to plot all target genes of two transcription factors with readable names, we will narrow down our
choices to interactions supported by small-scale evidences, and we will select from transcription factor
having up-to 50 target genes.

2

Therefore, we create a new interaction table containing interaction data supported by small-scale evidences.
(Alternatively, this table can also be downloaded directly from the TFLink website.)

Interaction_tab_SS <- Interaction_tab %>%
filter(`Small-scale.evidence` == "Yes")

Let’s save the names of such transcription factors having up to 50 target genes to a vector variable.

TF_names <- Interaction_tab_SS %>%
group_by(Name.TF) %>%
summarise(`Nr. of target genes` = n()) %>%
filter(`Nr. of target genes` < 50) %>%
select(Name.TF) %>%
pull()

Checking the content
head(TF_names)

[1] "AATF" "ABL1" "AHR" "AIP" "AIRE" "ANKRD1"

Then, let’s create a list variable containing all target genes of each transcription factors, to be able to find
the ones regulating common target genes.

Creating the list
TGs_per_TFs_list <- Interaction_tab_SS %>%

filter(Name.TF %in% TF_names) %>%
select(Name.TF, Name.Target) %>%
group_by(Name.TF) %>%
group_split() %>%
lapply(., pull, var = Name.Target)

Naming the elements
names(TGs_per_TFs_list) <- TF_names

Checking the content
head(TGs_per_TFs_list, n = 3)

$AATF
[1] "MYC" "TP53" "BAX" "CDKN1A" "KLKB1" "KLK3"
##
$ABL1
[1] "JUN" "TP53" "BAX" "CSF1" "CDKN1A" "BCL2" "BCL6" "PIM1"
[9] "FOXO3" "CCND2"
##
$AHR
[1] "AHRR" "MYC" "ABCG2" "MFSD2A" "MT2A" "IL1B" "PCNA" "FOS"
[9] "RFC3" "CYP1A2" "CA9" "UGT1A6" "UGT1A1" "CCNG2" "IL13" "CYP2B6"
[17] "CYP1B1" "CYP1A1" "IL6" "ARNT" "CCND1" "BRCA1"

Let’s check which transcription factor pairs have the most common target genes.

3

https://tflink.net/download/

TF pairs in every combinations
TF_combination_list <- combn(names(TGs_per_TFs_list), 2, simplify = FALSE)

Nr. of common genes of all TF pairs
Intersect_lengths <- list()
for(i in 1:length(TF_combination_list)){

Intersect_lengths[i] <-
intersect(TGs_per_TFs_list[[TF_combination_list[[i]][1]]],

TGs_per_TFs_list[[TF_combination_list[[i]][2]]]) %>%
length()

}
rm(i)

Converting list to vector
Intersect_lengths <- Intersect_lengths %>%

unlist()

Adding names of TF pairs (separated by "_")
names(Intersect_lengths) <- sapply(TF_combination_list, paste, collapse = "_")

Checking the maximum number of common genes
Intersect_lengths %>%

sort() %>%
tail()

NR1H2_NR1H3 FOSL2_JUND DNMT1_DNMT3B SREBF1_SREBF2 TWIST1_TWIST2
16 17 19 19 25
STAT5A_STAT5B
30

Let’s create a vector containing the names of the transcription factor pair having the most common target
genes.

TFs <- which.max(Intersect_lengths) %>%
names() %>%
str_split(pattern = "_") %>%
unlist()

Let's see
TFs

[1] "STAT5A" "STAT5B"

STAT5A and STAT5B (signal transducer and activator of transcription 5 A and B) are two highly sim-
ilar transcription factors. The STAT5 proteins are involved in cytosolic signalling and they mediate the
expression of specific genes (Nosaka et al. 1999).

4

5 Network visualization of the two transcription factors having
the most common target genes

6 Using the igraph R package

Now we need more steps to create an adjacency matrix input for the igraph network plot.

Adjacency matrix is a square matrix used to represent a finite graph. The elements of the matrix indicate
whether pairs of vertices are adjacent or not in the graph.

Creating data.frame
while excluding target genes with missing names ("-")
Wide_selected_Interaction_tab_SS <- Interaction_tab_SS %>%

filter(Name.TF %in% TFs & Name.Target != "-") %>%
select(Name.TF, Name.Target) %>%
mutate(Value = 1) %>%
pivot_wider(names_from = Name.Target, values_from = Value) %>%
replace(is.na(.), 0) %>%
data.frame()

Adding row names
rownames(Wide_selected_Interaction_tab_SS) <- Wide_selected_Interaction_tab_SS$Name.TF
Wide_selected_Interaction_tab_SS$Name.TF <- NULL

Converting to matrix
Wide_selected_Interaction_tab_SS <- Wide_selected_Interaction_tab_SS %>%

as.matrix()

We need a function for creating the (symmetrical) adjacency matrix
expand.matrix <- function(A){

m <- nrow(A)
n <- ncol(A)
B <- matrix(0,nrow = m, ncol = m)
C <- matrix(0,nrow = n, ncol = n)
cbind(rbind(B,t(A)),rbind(A,C))

}

Applying the expand.matrix function
Wide_selected_Interaction_tab_SS <- Wide_selected_Interaction_tab_SS %>%

expand.matrix()

Adding missing row names
rownames(Wide_selected_Interaction_tab_SS)[1:2] <- colnames(

Wide_selected_Interaction_tab_SS)[1:2]

Converting to symmetrical adjacency matrix to asymmetrical to be able to
create a directed graph (by deleting values below diagonal)
Wide_selected_Interaction_tab_SS[lower.tri(Wide_selected_Interaction_tab_SS)] <- 0L

Let’s see how does the resulted adjacency matrix looks like by checking its upper left part.

5

Wide_selected_Interaction_tab_SS[1:10, 1:10]

STAT5A STAT5B PIM1 PTTG1IP MET BCL2L1 IFNG FCGR1A CCND2 CEL
STAT5A 0 0 1 1 1 1 1 1 1 1
STAT5B 0 0 1 1 1 1 1 1 0 1
PIM1 0 0 0 0 0 0 0 0 0 0
PTTG1IP 0 0 0 0 0 0 0 0 0 0
MET 0 0 0 0 0 0 0 0 0 0
BCL2L1 0 0 0 0 0 0 0 0 0 0
IFNG 0 0 0 0 0 0 0 0 0 0
FCGR1A 0 0 0 0 0 0 0 0 0 0
CCND2 0 0 0 0 0 0 0 0 0 0
CEL 0 0 0 0 0 0 0 0 0 0

Let’s create the igraph plot.

library(igraph)

Creating the igraph variable
Network <- graph_from_adjacency_matrix(Wide_selected_Interaction_tab_SS,

mode = "directed", diag = FALSE)
Creating a vector containing three colours for vertices
Vcol <- case_when(colSums(Wide_selected_Interaction_tab_SS[1:2,]) == 0 ~ "#488990",

colSums(Wide_selected_Interaction_tab_SS[1:2,]) == 1 ~ "#ffbe6f",
colSums(Wide_selected_Interaction_tab_SS[1:2,]) == 2 ~ "#f66151")

Reducing the margins of the plot
par(mar = rep(0.1, 4))

Setting a random seed to reproduce the very same graph over and over again
set.seed(1)

Creating the plot itself
plot.igraph(Network, layout = layout_with_dh,

vertex.color = Vcol, vertex.label.color = "black",
vertex.label.cex = 0.4, edge.arrow.size = 0.4)

6

STAT5A

STAT5B

PIM1

PTTG1IP

MET

BCL2L1

IFNG

FCGR1A

CCND2

CEL

ESR2

IRF1

HRH1

CSN2

EGFR

MUC1

RNMT

LONP1

MYD88

IL6

ANGPTL4

OSM

CD40

TIMP3

CCND1

IL2RA

EXOC3

SP1

PRF1

PAX5

IL6ST

STK11

FOSL2

ESR1

SUMO1

RAD51
CCND3

TNF

IGF1

BCL6

PPARG

CDKN2B

BCL2

RARA

DAND5

COPS2

The two transcription factors are shown with green, their common target genes with red and their distinct
target genes with yellow vertices.

To avoid such overlapping among vertices we can adjust the network by hand using the tkplot function of
the igraph package.

set.seed(1)
tkplot(Network, layout = layout_with_dh,

vertex.color = Vcol, vertex.label.color = "black",
vertex.label.cex = 0.4)

After adjusting the common vertices by hand to avoid overlapping, we can produce a similar image.

7

7 Using the Cytoscape software

Let’s visualise the common and distinct target genes of the two transcription factors with the Cytoscape
network visualization software by following these steps:

1. After downloading the target gene interaction tables of the STAT5A and STAT5B transcription
factors from their TFLink entry pages, we open the Cytoscape software.

2. Then we import the tsv files as networks into the Cytoscape:

• File → Import → Network from file... and select the downloaded file(s) (one file at once).
• In the pop-up window click on the column names and select the following explanations for them:

– UniprotID.TF → Source Node Attribute
– Name.TF → Source
– UniprotID.Target → Target Node Attribute
– NCBI.GeneID.Target → Target Node Attribute
– Name.Target → Target
– then, all of the other columns will turn to Edge Attribute.

• Click on the OK button.

3. Repeat the steps of point 2 with the other interaction table as well.
4. Select only the small-scale interactions from the imported networks:

• On the left side in the Network panel click on the network what is needed to be filtered.
• Go to the Filter panel, click on the + sign, select the Edge: Small-scale evidence option, and

write “Yes” into the box.
• Then, create a net network: Go to File → Net Network → From Selected Nodes, Selected

Edges.

8

https://cytoscape.org/
https://cytoscape.org/
https://tflink.net/protein/p42229/
https://tflink.net/protein/p51692/
https://cytoscape.org/
https://cytoscape.org/

5. Repeat the steps of point 3 with the network of the other transcription factor.
6. Merge the filtered networks with Tools → Merge → Network..., and in the pop-up window put the

two filtered networks (targets_of_P42229.tsv(1) and targets_of_P51692.tsv(1)) into the right side of
the panel. Then click on the Merge button.

7. Go to the Style panel on the left side and set different colours, shapes, size parameters for the
transcription factors and the target genes.

8. To create a meaningful layout, select the nodes of the common target genes in the filtered network
at the Network panel and go to the Layout menu → Grid layout → Selected Nodes only. Then
repeat this with the nodes of the distinct target genes. You can drag the nodes of the two transcription
factors manually.

After all these steps we will end up a transcription factor - target gene interaction network like this:

8 Environment

In this use case the following software and package versions were applied:

• R version 4.1.3
• tidyverse version 1.3.1
• data.table version 1.14.2
• igraph version 1.2.11
• Cytoscape version 3.8.2

References

Nosaka, T, T Kawashima, K Misawa, K Ikuta, A L Mui, and T Kitamura. 1999. “Stat5 as a Molecular
Regulator of Proliferation, Differentiation and Apoptosis in Hematopoietic Cells.” The EMBO Journal
18 (17): 4754–65. https://doi.org/10.1093/emboj/18.17.4754.

9

https://doi.org/10.1093/emboj/18.17.4754

TFLink use case 2
Similarities and differences in the function of target genes of a nuclear hormone receptor,

unc-55 in Caenorhabditis elegans and in human

1 The aim of this use case

Here we investigate the functional diversity of target genes of a nuclear hormone receptor transcription
factor, the unc-55 in Caenorhabditis elegans (C. elegans) and in human. We perform Gene Ontology (GO)
overrepresentation analyses of the target genes in the two species in order to identify shared functional roles
that likely represent the ancestral function of unc-55. Furthermore, this comparison will yield insights into
the potentially divergent roles unc-55 play in these two distant animal groups.

2 Input data

Let’s download and read in to R the target gene interaction table of the unc-55 transcription factor in
Caenorhabditis elegans and the target gene interaction table of the unc-55 ortholog NR2F1 transcription
factor in human from the TFLink website using the read_tsv command of the tidyverse package.

library(tidyverse)
C.elegans unc-55
Interaction_tab_Ce <- read_tsv("https://tflink.net/protein/g5ecr9/")
human NR2F1
Interaction_tab_Hs <- read_tsv("https://tflink.net/protein/p10589/")

For the overrepresentation analyses we will need background genes sets. Therefore, we download all C.
elegans and human target genes available at the Download part of the TFLink website, and read it in with
the fread command of the data.table package that reads huge tables effectively.

library(data.table)

Creating a list for the Uniprot IDs of the background genes
Background_Uniprot <- list()

Background genes for C. elegans
Background_Uniprot$Ce <- fread(

"TFLink_Caenorhabditis_elegans_interactions_All_simpleFormat_v1.0.tsv") %>%
select(UniprotID.Target) %>%
unique() %>%
pull()

Background genes for human
Background_Uniprot$Hs <- fread(

"TFLink_Homo_sapiens_interactions_All_simpleFormat_v1.0.tsv") %>%
select(UniprotID.Target) %>%

1

https://tflink.net/protein/g5ecr9/
https://tflink.net/protein/g5ecr9/
https://tflink.net/protein/p10589/
https://tflink.net/protein/p10589/
https://tflink.net/
https://tflink.net/download/

unique() %>%
pull()

3 Gene ontology overrepresentation analysis of target genes

To have an idea about the type of Biological processes the unc-55 and the NR2F1 transcription fac-
tors regulate we perform a Gene ontology (GO) overrepresentation analysis of their target genes using the
clusterProfiler R Bioconductor package.

3.1 Translating the target genes and the background genes to Entrez IDs

First, we need to translate the Uniprot IDs of the target genes to Entrez IDs using the bitr function of the
clusterProfiler package. For this we need to install another two R Bioconductor packages containing
various biological identifiers: the org.Ce.eg.db and org.Hs.eg.db.

library(clusterProfiler)

Creating a list for the target genes
Genes_list <- list()

Translating the target genes of C. elegans unc-55 to Entrez IDs
Genes_list$Ce_unc55 <- bitr(geneID = Interaction_tab_Ce$UniprotID.Target,

fromType = "UNIPROT",
toType = c("ENTREZID"),
OrgDb = "org.Ce.eg.db") %>%

dplyr::select(ENTREZID) %>%
unique() %>%
pull()

Translating the background genes of C. elegans to Entrez IDs
Genes_list$Ce_BG <- bitr(geneID = Background_Uniprot$Ce,

fromType = "UNIPROT",
toType = c("ENTREZID"),
OrgDb = "org.Ce.eg.db") %>%

dplyr::select(ENTREZID) %>%
unique() %>%
pull()

Translating the target genes of human NR2F1 to Entrez IDs
Genes_list$Hs_NR2F1 <- bitr(geneID = Interaction_tab_Hs$UniprotID.Target,

fromType = "UNIPROT",
toType = c("ENTREZID"),
OrgDb = "org.Hs.eg.db") %>%

dplyr::select(ENTREZID) %>%
unique() %>%
pull()

Translating the background genes of human to Entrez IDs
Genes_list$Hs_BG <- bitr(geneID = Background_Uniprot$Hs,

fromType = "UNIPROT",
toType = c("ENTREZID"),

2

OrgDb = "org.Hs.eg.db") %>%
dplyr::select(ENTREZID) %>%
unique() %>%
pull()

3.2 The overrepresentation analyses

Let’s use the enrichGO clusterProfiler function to see in which Gene ontology terms the target genes are
overrepresented. We are not interested overrepresentation in too general or too specific GO terms, therefore
we discard terms annotating more than 500 or less than 10 genes.
Be avare that it may take a few seconds to calculate the overrepresentation analyses.

Creating a list for GO overrepresentation results
GO_results <- list()

Overrepresentation analysis of the targets of C. elegans unc-55
GO_results$Ce_unc55 <- enrichGO(gene = Genes_list$Ce_unc55,

universe = Genes_list$Ce_BG,
OrgDb = "org.Ce.eg.db",
ont = "ALL",
minGSSize = 10,
maxGSSize = 500,
pAdjustMethod = "bonferroni",
pvalueCutoff = 0.01,
qvalueCutoff = 0.01,
readable = TRUE)

Overrepresentation analysis of the targets of human NR2F1
GO_results$Hs_NR2F1 <- enrichGO(gene = Genes_list$Hs_NR2F1,

universe = Genes_list$Hs_BG,
OrgDb = "org.Hs.eg.db",
ont = "ALL",
minGSSize = 10,
maxGSSize = 500,
pAdjustMethod = "bonferroni",
pvalueCutoff = 0.01,
qvalueCutoff = 0.01,
readable = TRUE)

Let’s see the results of the GO overrepresentation analyses by checking the number of GO terms each set of
target genes were enriched in.

Nr. of GO terms for target genes of C. elegans unc-55
GO_results$Ce_unc55@result %>%

nrow()

[1] 318

Nr. of GO terms for target genes of human NR2F1
GO_results$Hs_NR2F1@result %>%

nrow()

[1] 201

3

3.3 Summarization of the Gene ontology overrepresentation results

As we see, there are too many GO terms each set of target genes were enriched in. Therefore, we perform
a following step and summarize the results by removing redundant GO terms. For this we use the rrvgo R
Biocondustor package. Here we will summarise the Biological process GO terms only.

Be avare that it may take a few seconds to calculate these summaries.

library(rrvgo)

Creating a list for GO summarisation results
GO_sum <- list()

Summarising the GO results of the targets of the C. elegans unc-55
GO_sum$Ce_simMatrix <- calculateSimMatrix(GO_results$Ce_unc55@result$ID,

orgdb = "org.Ce.eg.db",
ont = "BP",
method = "Rel")

GO_sum$Ce_scores <- -log10(GO_results$Ce_unc55@result$qvalue) %>%
setNames(., GO_results$Ce_unc55@result$ID)

GO_sum$Ce_reducedTerms <- reduceSimMatrix(simMatrix = GO_sum$Ce_simMatrix,
scores = GO_sum$Ce_scores,
threshold = 0.5,
orgdb="org.Ce.eg.db")

Summarising the GO results of the targets of the human NR2F1
GO_sum$Hs_simMatrix <- calculateSimMatrix(GO_results$Hs_NR2F1@result$ID,

orgdb = "org.Hs.eg.db",
ont = "BP",
method = "Rel")

GO_sum$Hs_scores <- -log10(GO_results$Hs_NR2F1@result$qvalue) %>%
setNames(., GO_results$Hs_NR2F1@result$ID)

GO_sum$Hs_reducedTerms <- reduceSimMatrix(simMatrix = GO_sum$Hs_simMatrix,
scores = GO_sum$Hs_scores,
threshold = 0.5,
orgdb="org.Hs.eg.db")

Let’s plot the main GO results and compare them.

C. elegans unc-55
scatterPlot(GO_sum$Ce_simMatrix, GO_sum$Ce_reducedTerms)

4

intracellular transport

cellular macromolecule localization

mitotic nuclear division

sister chromatid segregation

cellular response to stress

regulation of cellular component organization

embryo development ending in birth or egg hatching

cell division

establishment of organelle localization

localization within membrane

aerobic respiration

oxidative phosphorylation
spindle organization

DNA replication

vesicle−mediated transport

protein folding

mRNA transport

ribonucleoprotein complex export from nucleus

regulation of cellular localization

establishment of RNA localization

aging

human NR2F1
scatterPlot(GO_sum$Hs_simMatrix, GO_sum$Hs_reducedTerms, labelSize = 4)

5

mitotic nuclear division

cell cycle phase transition

sister chromatid segregation

regulation of cellular component size

negative regulation of protein modification process

RNA splicing

regulation of protein stability

negative regulation of phosphorus metabolic process

in utero embryonic development
myeloid cell differentiation

regulation of intrinsic apoptotic signaling pathway

protein folding

Let’s plot the main GO results that appeared to be common in the overrepresentation an summarisation
analyses of the target genes of the C. elegans unc-55 and the human NR2F1 transcription factors.

Filtering and plotting the common GO results
GO_sum$Ce_reducedTerms %>%

filter(go %in% GO_sum$Hs_reducedTerms$go) %>%
scatterPlot(GO_sum$Ce_simMatrix, .)

6

ribonucleoprotein complex biogenesis

mitotic nuclear division

sister chromatid segregation

ncRNA metabolic process

establishment of organelle localization

DNA replication

protein folding

As we can see there are several conserved functions, and even more that diverged during the evolution the
this transcription factor.

4 Environment

In this use case the following software and package versions were applied:

• R version 4.1.3
• tidyverse version 1.3.1
• data.table version 1.14.2
• clusterProfiler version 4.2.2
• org.Ce.eg.db version 3.14.0

7

• org.Hs.eg.db version 3.14.0
• rrvgo version 1.6.0

8

TFLink use case 3
Investigating the binding sites of the EGR1 transcription factor

1 The aim of this use case

Here we investigate the binding sites of the EGR1 transcription factor. After converting the TFLink binding
site table to BED and BAM files, we calculate the “coverage” to reveal the strength of evidence (number of
supporting experiments) for each binding site. Then we plot the binding sites on the human chromosomes,
indicating the number of supporting evidences each binding site has. Finally, we investigate specific binding
sites using the IGV genome viewer tool.

2 The input data

Let’s download the binding site table of human EGR1 transcription factor from the TFLink website, and
read it in to R with the read_tsv command of the tidyverse package.

library(tidyverse)
EGR1_BS_tab <- read_tsv("TFLink_P18146_TFBS_annot_v1.0.tsv")

Let’s see the first few rows of the binding site table.

EGR1_BS_tab %>%
slice(1:5)

Head of the binding site table (continued below)

TFLinkID UniprotID.TF Name.TF Organism Assembly Chromosome Start End

TFLinkSS09532447 P18146 EGR1 Homo sapiens hg38 chr14 59361534 59361673
TFLinkSS09543853 P18146 EGR1 Homo sapiens hg38 chr14 37596110 37596200
TFLinkSS09543856 P18146 EGR1 Homo sapiens hg38 chr14 96264096 96264186
TFLinkSS09543857 P18146 EGR1 Homo sapiens hg38 chr14 37594940 37595000
TFLinkSS09543858 P18146 EGR1 Homo sapiens hg38 chr14 37595930 37595990

Table continues below

Strand Genome.browser Detection.method PubmedID Source.database

+ https://genome.ucsc.edu/cgi-bin/hgTracks?db=
hg38&position=chr14:59361534-59361673

inferred by curator 18971253 ORegAnno

+ https://genome.ucsc.edu/cgi-bin/hgTracks?db=
hg38&position=chr14:37596110-37596200

inferred by curator 18971253 ORegAnno

+ https://genome.ucsc.edu/cgi-bin/hgTracks?db=
hg38&position=chr14:96264096-96264186

inferred by curator 18971253 ORegAnno

1

https://tflink.net/
https://en.wikipedia.org/wiki/BED_(file_format)
https://en.wikipedia.org/wiki/Binary_Alignment_Map
https://software.broadinstitute.org/software/igv/
https://tflink.net/protein/p18146/
https://tflink.net/
https://genome.ucsc.edu/cgi-bin/hgTracks?db=hg38&position=chr14:59361534-59361673
https://genome.ucsc.edu/cgi-bin/hgTracks?db=hg38&position=chr14:59361534-59361673
https://genome.ucsc.edu/cgi-bin/hgTracks?db=hg38&position=chr14:37596110-37596200
https://genome.ucsc.edu/cgi-bin/hgTracks?db=hg38&position=chr14:37596110-37596200
https://genome.ucsc.edu/cgi-bin/hgTracks?db=hg38&position=chr14:96264096-96264186
https://genome.ucsc.edu/cgi-bin/hgTracks?db=hg38&position=chr14:96264096-96264186

Strand Genome.browser Detection.method PubmedID Source.database

+ https://genome.ucsc.edu/cgi-bin/hgTracks?db=
hg38&position=chr14:37594940-37595000

inferred by curator 18971253 ORegAnno

+ https://genome.ucsc.edu/cgi-bin/hgTracks?db=
hg38&position=chr14:37595930-37595990

inferred by curator 18971253 ORegAnno

Small-scale.evidence Number.of.TFBS.overlaps TFBS.overlaps

Yes 0 -
Yes 0 -
Yes 0 -
Yes 0 -
Yes 0 -

Let’s check the number of binding sites of the EGR1 transcription factor.

EGR1_BS_tab %>%
nrow()

[1] 156418

3 Converting the binding site table to BED and BAM files

Let’s check the names of the chromosomes used in the binding site table.

EGR1_BS_tab %>%
group_by(Chromosome) %>%
group_keys() %>%
pull()

chr1, chr10, chr11, chr12, chr13, chr14, chr14_GL000009v2_random, chr14_GL000225v1_random, chr15,
chr16, chr17, chr18, chr19, chr2, chr2_KI270894v1_alt, chr20, chr21, chr22, chr22_KI270735v1_random,
chr22_KI270879v1_alt, chr3, chr4, chr4_GL000008v2_random, chr5, chr6, chr7, chr7_KI270803v1_alt,
chr8, chr8_KI270821v1_alt, chr9, chrM, chrUn_GL000219v1, chrUn_KI270442v1, chrUn_KI270742v1,
chrX, chrY

3.1 Excluding non-canonical chromosomes and saving the BED files

If we want to check the “coverage” for the canonical human chromosomes only, we need to exclude all other
contigs from the EGR1_BS_tab table.

Keeping rows where the name of the chromosome doesn't include "_", and
excluding the mitochondrial chromosome (chrM) as well.

Creating a singe BED file containing the data about the FORWARD and REVERSE
strands.
EGR1_BS_tab %>%
filter(!grepl(x = Chromosome, pattern = "_|M")) %>%
mutate(Name = "EGR1", Score = 1000) %>%

2

https://genome.ucsc.edu/cgi-bin/hgTracks?db=hg38&position=chr14:37594940-37595000
https://genome.ucsc.edu/cgi-bin/hgTracks?db=hg38&position=chr14:37594940-37595000
https://genome.ucsc.edu/cgi-bin/hgTracks?db=hg38&position=chr14:37595930-37595990
https://genome.ucsc.edu/cgi-bin/hgTracks?db=hg38&position=chr14:37595930-37595990

select(Chromosome, Start, End, Name, Score, Strand) %>%
arrange(Chromosome, Start, End, Strand) %>%
write_tsv("EGR1_BS.bed", col_names = FALSE)

Creating a BED file containing the data about the FORWARD strand only.
EGR1_BS_tab %>%
filter(!grepl(x = Chromosome, pattern = "_|M") & Strand == "+") %>%
mutate(Name = "EGR1", Score = 1000) %>%
select(Chromosome, Start, End, Name, Score, Strand) %>%
arrange(Chromosome, Start, End, Strand) %>%
write_tsv("EGR1_BS_forward.bed", col_names = FALSE)

Creating a BED file containing the data about the REVERSE strand only.
EGR1_BS_tab %>%
filter(!grepl(x = Chromosome, pattern = "_|M") & Strand == "-") %>%
mutate(Name = "EGR1", Score = 1000) %>%
select(Chromosome, Start, End, Name, Score, Strand) %>%
arrange(Chromosome, Start, End, Strand) %>%
write_tsv("EGR1_BS_reverse.bed", col_names = FALSE)

Let’s convert the BED file to BAM using the bedtobam command of the bedtools software package.

For this we need a text file, called: chrom.sizes containing the name and the size (in base pairs) of the
chromosomes. We can download this for the human genome version hg38 from here.

Let’s read the chrom.sizes file into R, exclude the non-canonical chromosomes, and write out a new
chrom.sizes file.

chrom_sizes_tab <- read_tsv(
"https://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/hg38.chrom.sizes",
col_names = c("Chromosome", "Size"))

chrom_sizes_tab %>%
write_tsv("chrom.sizes", col_names = FALSE)

Now we can run the bedToBam command in the terminal to create the BAM files.

Forward strand BAM
$ bedToBam -i EGR1_BS_forward.bed -g chrom.sizes > EGR1_BS_forward.bam
Reverse strand BAM
$ bedToBam -i EGR1_BS_reverse.bed -g chrom.sizes > EGR1_BS_reverse.bam

4 Calculating and investigating the “coverage”

Let’s calculate the number of evidences each binding site has using the samtools software.

Forward strand BAM
$ samtools depth EGR1_BS_forward.bam > EGR1_BS_forward.coverage
Reverse strand BAM
$ samtools depth EGR1_BS_reverse.bam > EGR1_BS_reverse.coverage

3

https://bedtools.readthedocs.io/en/latest/index.html
https://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/hg38.chrom.sizes
https://github.com/samtools/samtools

4.1 Reading in the “coverage” files to R.

Now we use the fread function of the data.table R package that reads huge tables effectively.

library(data.table)

Reading the coverage file of the FORWARD strand
EGR1_BS_cover <- fread("EGR1_BS_forward.coverage")

Reading the coverage file of the REVERSE strand
EGR1_BS_cover <- fread("EGR1_BS_reverse.coverage") %>%

Indicating that it is the coverage of the reverse strand by multiplying
the last column (containing information about the depth) with -1
mutate(V3 = V3*-1) %>%
Binding the rows of the reverse strand variable to the previous variable
containing the coverage of the forward strand
bind_rows(., EGR1_BS_cover) %>%
Renaming the columns according to their content
rename(Chromosome = V1, Locus = V2, Depth = V3) %>%
Arranging the rows by chromosome and locus (position)
arrange("Chromosome", "Locus")

Let’s check the “coverage” (the number of evidences each binding sites chromosomal position has).

EGR1_BS_cover %>%
group_by(Depth) %>%
summarise(n = n()) %>%
indicating the strand
mutate(Strand = case_when(Depth < 0 ~ "-",

Depth > 0 ~ "+"),
Depth = abs(Depth)) %>%

arrange(desc(Depth))

Number of evidences

Depth n Strand
12 1 -
11 2 -
10 4 -
9 9 +
8 18 -
8 297 +
7 1,648 -
7 1,980 +
6 3,126 -
6 3,370 +
5 3,164 -
5 4,949 +
4 6,346 -
4 20,330 +
3 18,586 -
3 132,572 +

4

Depth n Strand
2 81,920 -
2 669,525 +
1 366,387 -
1 41,819,023 +

4.2 Plotting the number of evidences of binding sites on chromosome 1

On the figure, the binding sites on the forward and reverse strands appear as positive and negative values
respectively.

Be avare that it may take a few seconds to render this plot.

EGR1_BS_cover %>%
filter(Chromosome == "chr1") %>%
ggplot(aes(x = Locus, y = Depth, group = Chromosome)) +
geom_line(size = 0.3, color = "#488990") +
xlab("Chromosome 1") +
ylab("Nr. of evidences") +
theme_minimal()

−5

0

5

0.0e+00 5.0e+07 1.0e+08 1.5e+08 2.0e+08 2.5e+08
Chromosome 1

N
r.

of
 e

vi
de

nc
es

As you can see, there are no binding sites at the middle of the chromosome, where the centromere is located.

5

4.3 Plotting the number of evidences of binding sites on all chromosomes

Be avare that it may take a several minutes to render this plot and your computer even can run out of
memory.

p <- EGR1_BS_cover %>%
ggplot(aes(x = Locus, y = Depth)) +
geom_line(size = 0.3, color = "#488990") +
xlab("Location") +
ylab("Nr. of evidences")

p +
facet_wrap(. ~ Chromosome, ncol = 4) +
theme_minimal() +
theme(axis.text.x = element_text(angle = 45, hjust=1))

6

7

5 How many EGR1 binding sites can be found on each chromo-
some?

Let’s use the downloaded binding site table again. We exclude non-canonical chromosomes.

New variable with canonical chromosomes (as factor)
EGR1_BS_tab_canChro <- EGR1_BS_tab %>%
filter(!grepl(x = Chromosome, pattern = "_|M")) %>%
mutate(Chromosome = factor(Chromosome, levels = paste0("chr", c(1:22, "X", "Y"))))

Barplot
EGR1_BS_tab_canChro %>%
group_by(Chromosome) %>%
summarise(n = n()) %>%
ggplot(aes(x = Chromosome, y = n)) +
geom_bar(stat="identity", fill = "#488990") +
ylab("Nr. of binding sites") +
theme_minimal() +
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1))

0

5000

10000

15000

ch
r1

ch
r2

ch
r3

ch
r4

ch
r5

ch
r6

ch
r7

ch
r8

ch
r9

ch
r1

0
ch

r1
1

ch
r1

2
ch

r1
3

ch
r1

4
ch

r1
5

ch
r1

6
ch

r1
7

ch
r1

8
ch

r1
9

ch
r2

0
ch

r2
1

ch
r2

2
ch

rX
ch

rY

Chromosome

N
r.

of
 b

in
di

ng
 s

ite
s

Chromosome 1 has the most binding site but what happens if we normalize the counts by the length of the
chromosome (using the chrom_sizes_tab variable).

Normalization and barplotting
EGR1_BS_tab_canChro %>%
group_by(Chromosome) %>%
summarise(n = n()) %>%
left_join(., chrom_sizes_tab) %>%
mutate(Chromosome = factor(Chromosome,

levels = paste0("chr", c(1:22, "X", "Y")))) %>%
mutate(`Nr. of binding sites\nper million bps` = n / (Size / 1000000)) %>%
ggplot(aes(x = Chromosome, y = `Nr. of binding sites\nper million bps`)) +
geom_bar(stat="identity", fill = "#488990") +
theme_minimal() +
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1))

8

0

50

100

150

ch
r1

ch
r2

ch
r3

ch
r4

ch
r5

ch
r6

ch
r7

ch
r8

ch
r9

ch
r1

0
ch

r1
1

ch
r1

2
ch

r1
3

ch
r1

4
ch

r1
5

ch
r1

6
ch

r1
7

ch
r1

8
ch

r1
9

ch
r2

0
ch

r2
1

ch
r2

2
ch

rX
ch

rY

Chromosome

N
r.

of
 b

in
di

ng
 s

ite
s

pe
r

m
ill

io
n

bp
s

Now we see that actually chromosome 19 has the most binding sites of ERG1.

In the next chapter we check around which genes these binding sites are located.

6 Visually investigating the binding sites with the IGV genome
viewer software

Now we have two choices to investigate the binding sites with the IGV genome viewer:

1. Reading in the transcription factor binding site BAM file (created above) as a “read” track.
2. Reading in the transcription factor binding site GFF3 file (downloaded from the corresponding TFLink

entry page) as an “annotation” track.

Let’s do both!

First we need to index the BAM file using the samtools software.

$ samtools index EGR1_BS.bam

With the above command a new file, named EGR1_BS.bam.bai was created.

After opening the IGV genome viewer:

1. let’s set the human genome to hg38 (open the drop down menu at the top left panel → More),
2. read the BAM file as “read” track (File → Load from file...),
3. color the “reads” by read strand (right click on the track in the left panel, Color alignments by →

read strand),
4. group the “reads” by read strand (right click on the track in the left panel, Group alignments by →

read strand),
5. read the downloaded GFF3 file as annotation track (File → Load from file...),
6. expand the annotation track (right click on the track in the left panel, Expand),
7. change the color of the annotation track to red (right click on the track in the left panel, Change track

color),
8. zoom in to the region 137,188,319-137,189,579 on chromosome 9 (inserting chr9:137,188,319-137,189,579

to the searching bar at top center, Go), and

9

https://software.broadinstitute.org/software/igv/
https://software.broadinstitute.org/software/igv/
https://software.broadinstitute.org/software/igv/
https://tflink.net/protein/p18146/
https://tflink.net/protein/p18146/
https://github.com/samtools/samtools

we see the figure below.

What we see at the “read” track area?

A) There is a longer (371bp) binding site on the forward strand (colored with light red) overlapping with
the putative promoter region, the first exon and first intron, of gene SSNA1.

B) Also there is a shorter (13bp) binding site on the forward strand in the first intron of gene SSNA1.
C) There is a shorter (13bp) binding site on the reverse strand (colored with light blue) in the putative

promoter region of gene ANAPC2.
D) At the “annotation” track area we see the similar picture but the orientation is showed by white arrows

on the binding sites.

Just to double check these findings by using an independent source of information: we can download the
target gene interaction table of the EGR1 transcription factor from the TFLink website, and we can look
up these two genes among the target genes. Then indeed, we will find both the SSNA1 and the ANAPC2
genes among the target genes. Both evidences were inferred by chromatin immunoprecipitation assays:

Quitting from lines 375-378 (TFLink_Use_Case_3_Binding_Sites_of_EGR1.Rmd) Error: ‘2_tar-
get_genes.tsv’ does not exist in current working directory (‘/home/barizona/Eszter/Kutatas/TF/use_cases_for_paper/UC3_binding_sites_EGR1’).

7 Environment

In this use case the following software and package versions were applied:

• R version 4.1.3
• tidyverse version 1.3.1
• igraph version 1.2.11
• Cytoscape version 3.8.2

10

https://tflink.net/protein/p18146/
https://tflink.net/

	The aim of this use case
	Input data
	Checking the number of target genes each transcription factor has
	Transcription factors having up to 50 target genes
	Network visualization of the two transcription factors having the most common target genes
	Using the igraph R package
	Using the Cytoscape software
	Environment
	References
	The aim of this use case
	Input data
	Gene ontology overrepresentation analysis of target genes
	Translating the target genes and the background genes to Entrez IDs
	The overrepresentation analyses
	Summarization of the Gene ontology overrepresentation results

	Environment
	The aim of this use case
	The input data
	Converting the binding site table to BED and BAM files
	Excluding non-canonical chromosomes and saving the BED files

	Calculating and investigating the ``coverage''
	Reading in the ``coverage'' files to R.
	Plotting the number of evidences of binding sites on chromosome 1
	Plotting the number of evidences of binding sites on all chromosomes

	How many EGR1 binding sites can be found on each chromosome?
	Visually investigating the binding sites with the IGV genome viewer software
	Environment

