Characterization of the Human Dihydropyrimidinase-Related Protein 2 (DRP-2) Gene

Kenzo KITAMURA,1,6 Muneyuki TAKAYAMA,2 Naoki HAMAJIMA,3 Makoto NAKANISHI,1 Makoto SASAKI,1 Yuichi ENDO,4 Tadashi TAKEMOTO,5 Hiroshi KIMURA,5 Masayoshi IWAKI,6 and Masaru NONAKA7,*

Departments of Biochemistry,1 Surgery I2 and Pediatrics,3 Nagoya City University Medical School, Mizuho-ku, Nagoya 467-8601, Japan, Department of Biochemistry, Fukushima Medical College, Fukushima-shi, Fukushima 960-1295, Japan,4 Department of Experimental Radiology, Shiga University of Medical Science, Otsu-shi, Shiga 520-2192, Japan,5 Department of Ophthalmology, Aichi Medical University, Nagakute-cho, Aichi 480-1195, Japan,6 and Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Tokyo 113-0033, Japan7

(Received 21 July 1999; revised 1 September 1999)

Abstract

The genes within the dihydropyrimidinase-related protein (DRP) family were originally identified in humans by their homology to dihydropyrimidinase (DHP). Four members of this gene family, DRP-1, -2, -3 and -4, are expressed mainly in the fetal and neonatal brains of mammals and chickens, and have been implicated as intracellular signal transducers in the development of the nervous system. We isolated the human DRP-2 gene, and determined its transcriptional start site and exon/intron organization. The gene spanned more than 62 kb, and contained 14 exons with lengths ranging from 62 bp to 2606 bp. The transcriptional start site was determined by an RNase protection assay and 5' rapid amplification of cDNA ends (RACE), and a highly GC-rich promoter was identified that contained possible regulatory elements such as a TATA box, CAAT box and three GC boxes. Comparison of the phase and position of intron insertions within the human DRP-2 gene with those within DRP-1, DHP and two Caenorhabditis elegans DRP/DHP homologs, indicated that DRPs are more conserved in their exon/intron organization than DHP.

Key words: DRP-2; dihydropyrimidinase; neuronal development; exon/intron organization

1. Introduction

The DRP (dihydropyrimidinase-related protein) gene family is composed of four members, DRP-1, -2, -3 and -4.1,2 Although we identified these genes as homologs of human DHP (dihydropyrimidinase), rodent and chicken counterparts of human DRPs have been identified using various approaches and named accordingly. Chicken CRMP-62 (collapsin response mediator protein of relative molecular mass 62 kDa) was functionally cloned as a factor required for collapsin-induced growth cone collapse.3 Rat TOAD-64 (turned on after division, 64 kDa) was identified as a protein exclusively expressed by post-mitotic neurons.4 Mouse Ulip (unc-33-like phosphoprotein) was identified as a neuronal phosphoprotein whose expression is regulated during development.5 This gene shows sequence similarity to C. elegans unc-33, which is potentially involved in the control of neuritic outgrowth and axonal guidance.6 These rodent and chicken genes correspond with the human DRP genes as follows: DRP-1/CRMP-1/Ulip3, DRP-2/CRMP-2/Ulip2, DRP-3/CRMP-4/Ulip1, and DRP-4/CRMP-3/Ulip4.1,2,7,8

The overall amino acid sequence identity of the DRP family members ranges from 66% to 80%, suggesting that they have arisen by gene duplication from a common ancestor. DRPs are implicated in the developmental process of the nervous system of mammals, chicken and amphibia.9 However, extra-neuronal functions have also been predicted for DRPs since they are differentially expressed in various adult tissues, although at a lower level than observed in the developing brain.1 The restricted expression of DRP-3 in post-meiotic round spermatids has provided a very clear example of extra-neuronal expression of DRPs.2 Clarification of the biochemical function of DRPs may help in elucidating the physiological roles

Communicated by Hiroshi Yoshikawa
* To whom correspondence should be addressed. Tel. +81-3-5800-3397, Fax. +81-3-5800-3397, E-mail: mnonaka@biol.s.u-tokyo.ac.jp
† The nucleotide sequence data reported in this paper will appear in the DDBJ, EMBL and GenBank nucleotide sequence databases with accession numbers AB020764 to AB020777.
these proteins undertake in neuronal and extra-neuronal cells. The DRPs show 57% to 59% amino acid identity with DHP throughout their length, with the exception of about 90 residues at the C-terminus. DHP (EC 3.5.2.2) is the second enzyme in the uracil and thymine degradation pathway, and catalyzes the amide-hydrolysis of dihydrouracil and dihydrothymine. DHP is a homotetrameric metalloenzyme with a molecular mass of 215 kDa, a subunit mass of 54 kD, and a zinc ion within each subunit. The complete primary structures of human and rat DHP have been determined from their cDNA sequences.

In this paper, we describe the structural analysis of the human DRP-2 gene, with the aim of gaining a better understanding of the evolutionary relationship between DRPs and DHP. We found that the exon/intron organization of the DRP-2 gene was identical to the human DRP-1 gene, but was significantly different from the human DHP gene.

2. Materials and Methods

2.1. Isolation and characterization of human DRP-2 gene

Two human genomic phage libraries (Health Science Research Resources Bank, Osaka, Japan) were screened for clones containing exons from the human DRP-2 gene using cDNA probes 1 to 4 (Fig. 1). Walking probes were then prepared from the terminal regions of the isolated clones. The probes were labeled with [α-32P]dCTP (3000 Ci/mmmole) using the Rediprime DNA labeling system (Amersham, Buckinghamshire, UK), and used to screen approximately 1 × 10^6 plaques from each human genomic DNA library. Exon-containing DNA fragments were subcloned into the pGEM-3Zf (+) vector, and sequenced by fluorescece big dye terminator cycle sequencing on a 373A or 310 sequencer (ABI/Perkin-Elmer, Foster City, CA) to determine each exon/intron boundary. Intron size was estimated by restriction mapping of the phage clones, and was confirmed by PCR analysis of genomic DNA.

Genomic DNA was prepared from the peripheral blood leukocytes of normal individuals by phenol-chloroform extraction. PCR primers for introns 1–4, 7 and 8 were designed using exon sequences 50–100 bp upstream or downstream from the exon/intron boundaries. PCR amplification was conducted as follows: 1 min at 94°C, followed by 30 cycles of denaturing for 20 sec at 98°C, and annealing and extension for 10 min at 68°C or 70°C. The resulting amplified products were subcloned into the pGEM-T Easy vector (Promega Corporation, Madison, WI), and at least five independent clones were sequenced to confirm the exon sequences. The sequence data was analyzed using the Genetyx Mac 9.0 program (Software Development Co. LTD. Tokyo, Japan).

2.2. RNase protection analysis

Preliminary sequence analysis indicated that the 1.5-kb BamHI fragment of clone 1-7 (Fig. 2A) contained an exon encoding the 5’ end of the human DRP-2 cDNA. PCR primers, RPA s-1 (5’-TTTGGATCCTTC-3’) and RPA as-1 (5’-TTTGGATCCCGTAACGGATGAATGCAATCC-3’) (Fig. 4B) were designed to amplify the 344-bp fragment that spanned the possible transcriptional initiation site. PCR amplification was carried out using the 1.5-kb BamHI fragment as a template, and the PCR product was subcloned into the BamHI site of the pGEM-3Zf (+) vector. After linearization with HindIII, an RNA probe was synthesized using T7 RNA polymerase and [α-32P]UTP.

An RNase protection assay was performed using human fetal brain total RNA (Clontech Laboratories Inc., Palo Alto, CA) and a High-Speed Hybridization Ribonuclease Protection Assay kit (Ambion Inc., Austin, TX), following the protocol outlined by the manufacturer. Briefly, the probe was hybridized with 20 μg of
human fetal brain RNA, digested with RNase T1 (20,000 unit/ml), and analyzed on a 6% denaturing polyacrylamide gel. After being fixed and dried, the gel was exposed to an X-ray film at −70°C for 5 days using an intensifying screen.

2.3. Rapid amplification of 5'-end of human DRP-2 cDNA

Rapid amplification of the cDNA ends of DRP-2 was carried out using the 5' RACE system (Gibco BRL Life Technologies Inc., Rockville, MD). Total RNA from human fetal brain (0.5 μg) was reverse-transcribed for 50 min at 42°C using Super Script II (Gibco BRL Life Technologies Inc., Rockville, MD) and the primer complementary to the +310 to +330 nucleotides of human DRP-2 cDNA (Genbank accession number, D78013; 5'-ATCAGAAGACGATCGCTCGTG-3'). After removing the excess primer with a spin column, the first strand reaction products were tailed with 2 mM dCTP and terminal deoxynucleotidyl transferase. Amplification was performed using an abridged anchor primer (5'-GGCCACGCGTGCAGTAC-3') and a nested primer complementary to the +152 to +172 nucleotides of the sequence shown in Fig. 4B (5'-TGAAAAGGTCGACCCGCTTC-3'). The PCR product was subcloned into the pGEM-T Easy vector and sequenced using the -21M13 forward primer.

3. Results

3.1. Isolation of human DRP-2 gene

Six phage clones (1-7, 1-5, 1-10, 1-3, 1-6 and 2-1) were isolated from the human genomic library in the λEMBL3 arm using probes 1 to 4 from human DRP-2 cDNA (Fig. 1). These clones were aligned from the results of restriction mapping and Southern hybridization analyses (Fig. 2). Two gaps, between clones 1-10 and 1-3, and between clones 1-6 and 2-1, were identified. To fill the latter gap, a human genomic library in the λDASH2 arm was screened using the 4.3-kb BamHI fragment of the 5' end of the insert in clone 2-1 as a probe. This resulted in the isolation of clone 3-1. Walking was repeated once more, resulting in the isolation of a clone that overlapped with clones 1-6 and 3-1 (clone 4-1). Although we could not fill the gap between clones 1-10 and 1-3, struc-
Table 1. Exon/intron boundaries of the human DRP-2 gene.

<table>
<thead>
<tr>
<th>Exon number (size)</th>
<th>cDNA position of exon</th>
<th>5' splicing site</th>
<th>Intron number (size)</th>
<th>3' splicing site</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (320bp)</td>
<td>1-320</td>
<td>AGGATGCAAG GAGGTGTTGG</td>
<td>1 (4kb)</td>
<td>ttggttcAG AGGATGCAAG</td>
</tr>
<tr>
<td>2 (89bp)</td>
<td>321-409</td>
<td>GCTGCCACAA GAGGTGTTGA</td>
<td>2 (1.9kb)</td>
<td>gtcctatcAG GCAATAGAG</td>
</tr>
<tr>
<td>3 (185bp)</td>
<td>410-594</td>
<td>AGCTATGACGA GAGGTGTTGA</td>
<td>3 (>20kb)</td>
<td>tttctcttcAG TTGACACAGT</td>
</tr>
<tr>
<td>4 (165bp)</td>
<td>595-759</td>
<td>AGGATGCAAG GAGGTGTTGC</td>
<td>4 (2.5kb)</td>
<td>cctccactAG GCGTAAAGTC</td>
</tr>
<tr>
<td>5 (622bp)</td>
<td>760-821</td>
<td>GCATTGGCGG GAGGTGTTGA</td>
<td>5 (0.5kb)</td>
<td>tctctctcAG AATTAAGAG</td>
</tr>
<tr>
<td>6 (81bp)</td>
<td>822-902</td>
<td>CATTGGCGG GAGGTGTTGC</td>
<td>6 (0.6kb)</td>
<td>aacctgcAG GCGCAGAGA</td>
</tr>
<tr>
<td>7 (693bp)</td>
<td>903-971</td>
<td>AGGATGCAAG GAGGTGTTTC</td>
<td>7 (7kb)</td>
<td>tgcgttttcAG GCGCAGAGA</td>
</tr>
<tr>
<td>8 (121bp)</td>
<td>972-1092</td>
<td>GCGAGAAGG GAGGTGTTCT</td>
<td>8 (9kb)</td>
<td>ttggtttcAG GACGATGCT</td>
</tr>
<tr>
<td>9 (157bp)</td>
<td>1093-1249</td>
<td>TCCCTGCTGG GAGGTGTTCT</td>
<td>9 (0.4kb)</td>
<td>tttctctcAG GCGCAGAGA</td>
</tr>
<tr>
<td>10 (142bp)</td>
<td>1250-1391</td>
<td>CAGGCTGCGG GAGGTGTTGA</td>
<td>10 (3.2kb)</td>
<td>tctctctcAG GTCGACAGT</td>
</tr>
<tr>
<td>11 (171bp)</td>
<td>1392-1562</td>
<td>ACACAGACG GAGGTGTTGA</td>
<td>11 (4.5kb)</td>
<td>tttctctcAG CCGCAGAG</td>
</tr>
<tr>
<td>12 (180bp)</td>
<td>1563-1742</td>
<td>AGGATGCAAG GAGGTGTTTC</td>
<td>12 (0.5kb)</td>
<td>tttctctcAG CCGCAGAG</td>
</tr>
<tr>
<td>13 (166bp)</td>
<td>1743-1908</td>
<td>AATGGTGGCG GAGGTGTTGC</td>
<td>13 (2.2kb)</td>
<td>tttctctcAG CCGCAGAG</td>
</tr>
<tr>
<td>14 (2606bp)</td>
<td>1909-4514</td>
<td>AGGATGCAAG GAGGTGTTGG</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Nucleotides are numbered according to the cDNA sequence, starting with +1 for the first nucleotide of the transcriptional initiation site.

b Exon and intron sequences are shown in upper-case (10 bp of exon sequence) and lower-case (10 bp of intron sequence), respectively, and the intron residues adjoining the splice junction are shown in boldface.

3.2. Determination of exon/intron boundaries of human DRP-2 gene

Based on the physical map of the human DRP-2 gene, we identified eight phage clones that contained part of the DRP-2 gene. These clones were analyzed by Southern hybridization using cDNA probes, and the exon-containing restriction fragments were subcloned into a plasmid and sequenced with the -21M13 and M13R primers. The splice site junctions were determined by comparing the genomic sequences with the human DRP-2 cDNA sequence.

Fourteen exons were identified that ranged from 62 bp (exon 5) to 2606 bp (exon 14) in length (Fig. 2, Table 1). The first and last exons were identified based on the analysis of the transcriptional initiation site (see below) and the poly-A additional site, respectively. The size of the human DRP-2 gene was estimated to be at least 62 kb. Also shown in Table 1 is the nucleotide sequence data for the exon/intron boundaries. This data indicated that all introns contained the conserved GT and AG sequences at the 5' splice donor site and the 3' splice acceptor site, respectively. The size of the introns varied from 0.4 kb (intron 9) to more than 20 kb (intron 3).

The exon/intron organization of the human DRP-2 gene was compared with that of human DRP-1,13 human DHP14 and two C. elegans homologs, R06C7.3 and C47E12.8 (EMBL accession numbers Z71266 and Z68882, respectively). As shown in Fig. 3, the position and phase of intron insertion were completely conserved between the DRP-2 and DRP-1 genes. Only one intron was common to all these five genes, three introns were shared by DRP-2, DRP-1, R06C7.3 and C47E12.8, and four introns were shared by DRP-2, DRP-1 and DHP.

3.3. Determination of transcriptional initiation site of human DRP-2 gene

We used two different approaches to determine the 5' end of the human DRP-2 mRNA. In the first approach, we performed 5' RACE using human fetal brain mRNA and an internal primer specific to the nucleotide sequence near the 5'-end of the cDNA clone.1 Three positive clones were identified using this method, and the longest clone extended 7 bp further upstream than the 5'-end of the cDNA clone. This nucleotide was tentatively assigned to the +1 position (Fig. 4B). In the second approach, we performed an RNase protection assay using the same human fetal brain mRNA. An RNA probe was synthesized by PCR amplifying the genomic DNA fragment using primers that supposedly spanned the transcriptional analysis of the other parts of the DRP-2 gene (see below) indicated that no exons were present in this gap.
The clone that contained exon 1 (Clone 1-7; Fig. 4B). The 5' upstream region of the human DRP-2 gene was very GC rich, and one TATA-box, one CAAT-box and three GC-boxes were identified.

4. Discussion

From an evolutionary viewpoint, it is interesting that the recent completion of *C. elegans* genome sequencing has indicated that *C. elegans* has only three genes (unc-33, R06C7.3 and C47E12.8) with significant sequence similarity to vertebrate DRP/DHP (four DRPs and DHP). Since the amino acid sequence identities of R06C7.3 and C47E12.8 to vertebrate DRP/DHP are between 46% and 59%, whereas the amino acid identities of unc-33 to DRP/DHP are between 35% to 37%, vertebrate DRP/DHP are considered to have diverged from a common ancestor similar to R06C7.3 and C47E12.8. The R06C7.3 and C47E12.8 share three positions and phases of intron insertion with the DRP-2 and DRP-1 genes, but none with the DHP gene except for the one position common to all these five genes (Fig. 3). Therefore, with respect to exon/intron organization, DRPs seem to be more conserved than DHP. However, with respect to conservation of amino acid residues critical for protein function, DHP seems to be more conserved than DRPs.
Recently, it has been proposed that the amidohydro-
lases that are related to urease share the same active
site architecture, including four histidine residues and
one aspartic acid residue involved in metal-binding.15 Ac-
tual involvement of these residues in metal binding and
enzyme activity has been shown in Bacillus stearother-
mophilus D-hydantoinase by site-directed mutagenesis.16
Human1 and rat12 DHP, as well as R06C7.3 and
C47E12.8, have retained all five of these metal-binding
residues, whereas all reported DRP sequences to date
have substitutions at one or more of these sites.1,2,7
Therefore, it is unlikely that DRPs have amidohydro-
lase activity, although four members of the DRP family
form a heterotetramer that is similar to the homote-
tramer structure of DHP.17 The biochemical function of
DRP's remains to be clarified.

Inconsistencies in the chromosomal localization of the
human DRP-2 gene have been reported, since two dif-
ferent expressed sequence tags corresponding to DRP-2
have been assigned to two different chromosomes,818
and 21 (EMBL accession number, Z47338). Recently,
the mouse DRP-2 (CRMP-2) gene has been mapped
to the central region of chromosome 14 by interspecific
backcross analysis, and by fluorescence in situ hybridiza-
tion (FISH) analysis, and the corresponding human re-
region (8p21) has been shown to harbor the human DRP-2 gene.19 We also performed FISH analysis for the DRP-2
gene, and confirmed that this gene resides at 8p21 (data
not shown). The human DRP-1 gene has been located at
4p15-16.1, near the Huntington disease loci,13,20 and we
have assigned the human DHP gene to 8q22.14 Overall,
this data indicates that the DRP/DHP loci are widely
dispersed throughout the human genome.

In the mouse, the wobbler lethal (wl) mutation that
causes various neurological and neuromuscular disorders
has been mapped in the vicinity of the DRP-2 gene.21 In
humans, DRP-2 has been associated with the neurofibril-
lary tangles observed in Alzheimer's patients,22 suggest-
ing that DRP-2 may be involved in the neuritic degen-
eration observed in this disease. The structural informa-
tion on the human DRP-2 gene obtained in the present
study may facilitate further analysis of a possible rela-
tionship between the DRP-2 gene and the wl mutation
or Alzheimer's disease.

Acknowledgments: We thank Drs. Chisato
Namikawa-Yamada and Noriyuki Kuroda for their help-
ful comments and suggestions. This work is supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture of Japan (10558089) to M.N.

References

