
Comparing multiple treatments a1

A SIMPLE, GRAPHICAL APPROACH TO COMPARING MULTIPLE
TREATMENTS: ONLINE SUPPLEMENT

S1. THE CASE OF A SINGLE TREATMENT

Here, we provide some additional insight into the choice of γ by considering the special case where k =
1 (i.e., the case where a single treatment is compared to a control). In doing so, we will assume that the
limiting distribution of

√
n

(
β̂n − β

)
is bivariate normal, with mean vector (0, 0)

′
and covariance matrix

(
�0 0
0 �1

)
.

We will also assume that �̂n,s is a consistent estimate of �s, so that se
(
β̂n,s

) =
√

�̂n,s/n, for s ∈ {0, 1}.
With k = 1, our problem only involves testing the hypothesis that β0 = β1 (or, equivalently, δ1 = 0). If

this hypothesis is true, then

lim
n→∞

P

⎛
⎝

√
n

(
β̂n,0 − β̂n,1

)
√

�̂n,0 + �̂n,1

> 	−1(1 − α/2)

⎞
⎠ = α/2, (S.1)

where 	−1( · ) is the inverse of the standard normal distribution function (so that, e.g., 	−1(0.975) = 1.960).
Rearranging the above, we have

lim
n→∞

P
(
Ln,0(Bn	

−1(1 − α/2)) > Un,1(Bn	
−1(1 − α/2))

) = α/2, (S.2)

where

Bn =
√

�̂n,0 + �̂n,1√
�̂n,0 +

√
�̂n,1

.

Next, swapping the indices in (S.2), we have

lim
n→∞

P
(
Ln,1(Bn	

−1(1 − α/2)) > Un,0(Bn	
−1(1 − α/2))

) = α/2. (S.3)

Thus, since the events within (S.2) and (S.3) are disjoint, we have

lim
n→∞

P

(
max
s∈{0,1}

Ln,s(Bn	
−1(1 − α/2)) > min

s∈{0,1}
Un,s(Bn	

−1(1 − α/2))

)
= α.

Accordingly, rather than choosing for γ via re-sampling, we could form uncertainty intervals for β0 and
β1 as

Cn,0(Bn	
−1(1 − α/2)) (S.4)

and

Cn,1(Bn	
−1(1 − α/2)), (S.5)

respectively, and use these uncertainty intervals to make inferences about the ordering of β0 and β1 as usual.
In doing so, the probability that we spuriously infer that either β0 > β1 or β1 > β0 is exactly equal to α

asymptotically.
These results demonstrate that basing inferences about the ordering of β0 and β1 on the non-overlap of

their (asymptotically valid) (1 − α)-level confidence intervals, Cn, 0(	−1(1 − α/2)) and Cn, 0(	−1(1 − α/2)),
respectively, is overly conservative (since Bn < 1). On the other hand, we can use our uncertainty intervals
to form an asymptotically valid (1 − α)-level confidence interval for δ1 ≡ β1 − β0. As shown in Section 3.2
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of Bennett and Thompson (2016), hereafter BT, such a confidence interval is simply the difference in the
estimates of β1 and β0, plus or minus the average lengths of their uncertainty intervals, i.e.,

[(
β̂n,1 − β̂n,0

) ± Bn	
−1(1 − α/2) × (

se
(
β̂n,1

) + se
(
β̂n,0

))]
.

Indeed, since δ̂n,1 ≡ β̂n,1 − β̂n,0, we have se
(
δ̂n,1

) =
√(

�̂n,0 + �̂n,1

)
/n, and the above is simply

[
δ̂n,1 ± 	−1(1 − α/2) × se

(
δ̂n,1

)]
.

Finally, it can be seen from (S.1) that inferences based on the non-overlap of the uncertainty intervals
in (S.4) and (S.5) will be identical to those based on a hypothesis testing procedure that rejects βs = β t in
favour of βs > β t if

√
n

(
β̂n,s − β̂n,t

)
se

(
β̂n,s − β̂n,t

) > 	−1(1 − α/2).

S2. SIMULATION EVIDENCE

S2.1. A Simple Illustration. To illustrate the perils of ignoring the issue of multiple testing in our
setting, we generate, for k ∈ {2, . . . , 10}, one million samples from the model (2.1) of the main paper as
follows. We assign 100 observations to each of the k treatment groups and to a control group, so that n =
100(k + 1). We set β0 = 1 and δ1 = ··· = δk = 0, and exclude the X′

iη term. For each i, Vi is an independent
standard normal draw.

Within each sample, we use individual t-tests at the 5% nominal level to test (A) each of the k hypotheses
in (2.2) of the main paper, and (B) each of the

(
k

2

)
hypotheses in (2.3) of the main paper. As a point of

comparison, we also use a single F-test at the 5% nominal level to jointly test the hypothesis that δ1 = ··· =
δk = 0. Clearly, if this hypothesis is true, then all of the hypotheses in (2.2) and (2.3) of the main paper are
true as well. However, rejection of this hypothesis provides no guidance as to which of the hypotheses in
(2.2) or (2.3) of the main paper ought to be rejected individually; it could be that just one treatment effect is
non-zero, or even that all k treatment effects are non-zero (in which case some or all of the treatment effects
may be different from each other).19

The rejection frequencies for the different types of tests are shown in Figure S1. Specifically, the dash-
dotted line shows the frequency of rejecting at least one of the k hypotheses in (2.2) of the main paper, the
dashed line shows the frequency of rejecting at least one of the

(
k

2

)
hypotheses in (2.3) of the main paper, and

the solid line shows the frequency of rejecting at least one of the total of
(
k+1

2

)
hypotheses, i.e., the empirical

FWER. The dotted line shows the rejection frequency for the single F-test, which is, unsurprisingly, 0.050
for all k. Note, however, that even with k = 2, the empirical FWER across the individual tests is 0.122; the
frequency of rejecting (A) δ1 = 0 and/or δ2 = 0 is 0.091, and (B) δ1 = δ2 is, unsurprisingly, 0.050. With k
= 10, the empirical FWER across the individual tests is 0.675.

S2.2. The Overlap Procedure. We now examine the finite-sample performance of the overlap procedures
described above by way of several Monte Carlo experiments. As in BT, we consider a basic (unrefined)
max-T procedure as a benchmark for the basic (unrefined) overlap procedure.20 Specifically, this procedure
rejects the hypothesis βs = β t in favour of βs �= β t whenever the absolute value of

Tn,(s,t) = β̂n,s − β̂n,t

se
(
β̂n,s − β̂n,t

) (S.6)

19 As noted in the main paper, Young (2019) jointly tests the hypothesis that all of the treatment effects are zero.
20 Romano and Wolf (2005a) propose a stepwise refinement that is applicable to this max-T procedure. As in BT, we

compare the unrefined max-T procedure to the unrefined overlap procedure in order to reduce the computational cost of
our experiments.
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Figure S1. Rejection rates for individual t-tests and joint F-test.

exceeds the 1 − α quantile of max(s,t)∈K2 |T ∗
n,(s,t)|, where

T ∗
n,(s,t) =

(
β̂∗

n,s − β̂n,s

) − (
β̂∗

n,t − β̂n,t

)
se

(
β̂∗

n,s − β̂∗
n,t

) .

Note that, if there are no other explanatory variables (i.e., if the X′
iη term is excluded from model (2.1) in

the main paper), as in the design of our simulations in Section S3.1 above and in what follows, then the
estimate of Cov

(
β̂n,s , β̂n,t

)
, which se

(
β̂n,s − β̂n,t

)
generally depends on, will be zero for all s �= t. That is,

se
(
β̂n,s − β̂n,t

) =
√

se
(
β̂n,s

)2 + se
(
β̂n,t

)2
in such cases. Nonetheless, Tn, (s, t) and Tn,(s,t ′) will be correlated,

since β̂n,s − β̂n,t and β̂n,s − β̂n,t ′ are correlated.
It is interesting to point out here that inferences based on the modified overlap procedure, which ignores

the comparisons between treatment effects (see Section 2.5 of the main paper), will be identical to those
based on a max-T procedure, which rejects δs = 0 in favour of δs > 0 if Tn, s > λ, and of δs < 0 if Tn, s <

−λ, where

Tn,s = δ̂n,s

se
(
δ̂n,s

) .

The reason for this is that the choice of λ suggested in Section 2.5 of the main paper is just the 1 − α quantile
of maxs∈{1,...,k} |T ∗

n,s |, where

T ∗
n,s = δ̂∗

n,s − δ̂n,s

se
(
δ̂∗
n,s

) .

The design of our simulations is the same as the one described in Section S3.1 above, but with several
variations. First, we consider k ∈ {5, 10} and assign n0 ∈ {50, 100, 200} observations to each of the k
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Table S1. Empirical FWERs for max-T and overlap procedures

Homoskedasticity Heteroskedasticity

k n0 max-T Overlap
Mod.

overlap max-T Overlap Mod. overlap

5 50 0.052 0.050 0.052 0.053 0.051 0.051
100 0.051 0.049 0.049 0.051 0.050 0.051
200 0.052 0.050 0.051 0.052 0.050 0.048

10 50 0.053 0.051 0.050 0.052 0.050 0.051
100 0.053 0.051 0.051 0.052 0.051 0.050
200 0.051 0.049 0.051 0.051 0.049 0.050

treatment groups and to a control group (so that n = n0(k + 1)). Second, we set βs = θ (s + 1), with θ ∈
{0, 0.1, 0.2, . . . , 1}, which allows us to examine both control of the FWER (when θ = 0) and power (when
θ > 0). Finally, we consider two different specifications for the error term distribution: a homoskedastic
case in which all of the errors are drawn from the standard normal distribution, and a heteroskedastic
case in which the errors for observations assigned to the control group are standard normal, while the
observations assigned to treatment group s ∈ {1, . . . , k} are normal with mean zero and variance s + 1. In
both cases, we estimate β using OLS and obtain heteroskedasticity-consistent standard errors (specifically,
the HC0 variant of MacKinnon and White, 1985). The bootstrap counterparts of these objects are obtained
using 499 replications of the wild bootstrap (Wu, 1986; Liu, 1988; Mammen, 1993) with the Rademacher
distribution (Davidson and Flachaire, 2008). Throughout all of our simulations, we set the nominal FWER
α equal to 0.05 and generate 100,000 samples.

Table S1 shows that control of the FWER for the max-T procedure and both the unmodified and mod-
ified overlap procedures is adequate at all of the sample sizes considered in both the homoskedastic and
heteroskedastic cases for both k = 5 and k = 10.

In order to compare the power of the max-T procedure and the (unmodified) overlap procedure, we
follow BT and Romano and Wolf (2005b) in examining average power, which is the proportion of false
hypotheses (of the form βs = β t when θ > 0) that are rejected. Figures S2(a) and S2(b) display the empirical
average power for these two procedures as a function of θ in the homoskedastic and heteroskedastic cases,
respectively (to save space, we only present results for k = 5). Within these figures, black lines correspond
to the overlap procedure, and red lines correspond to the max-T procedure, while lines that are solid, dashed,
and dash-dotted correspond to n0 = 50, n0 = 100, and n0 = 200, respectively. Evidently, both procedures
have nearly identical average power for all of the sample sizes considered in the homoskedastic case. In the
heteroskedastic case, the max-T procedure has slightly higher average power in the larger sample sizes.

Finally, we turn to the gain in power that results from using the modified overlap procedure. Specifically,
we examine the probability that the largest (i.e., the ’best’) parameter is correctly identified (here, we always
have θ > 0, so the largest parameter is βk + 1). Figures S3(a) and S3(b) display the empirical probability
that the ’best’ is identified by the two overlap procedures as a function of θ in the homoskedastic and
heteroskedastic cases, respectively (as above, we only present results for k = 5). Within these figures, the
black line corresponds to the unmodified overlap procedure, while the blue line corresponds to the modified
overlap procedure. To reduce clutter, we only plot the results for n0 = 200, but the results for the other
sample sizes are qualitatively similar. Namely, the modified overlap procedure does a much better job in
identifying the ’best’, particularly in the heteroskedastic case (where the largest parameter estimate has the
largest variance). As noted in the previous section, this is due to the fact that γ is chosen to be much smaller
with the modified overlap procedure, resulting in narrower uncertainty intervals. In all cases shown here, we
find that the value of γ that is chosen by the modified overlap procedure is slightly less than half as large (on
average, over the 10,000 samples) as the value of γ that is chosen by the unmodified overlap procedure. More
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Figure S2. Empirical average power for max-T and overlap procedures (k = 5).

Figure S3. Empirical probability of identifying the best for the unmodified and modified overlap
procedures (k = 5).

C© 2019 Royal Economic Society.
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generally, this ratio will decrease as k is increased (since an increasing number of ’irrelevant’ comparisons
can be eliminated), but will increase as n is increased (since asymptotically, both procedures will correctly
identify the largest parameter with probability one).

S3. COMPUTATIONAL DETAILS FOR PERFORMANCE PAY EXAMPLE

Here, we outline the computational steps involved in choosing γ for the example in Section 2.4 of the
main paper. Note that the first four steps are concerned with obtaining the parameter estimates and their
corresponding standard errors, as well as the bootstrap counterparts of these objects, and would thus be
required for any conventional bootstrap-based hypothesis testing procedure; only the fifth step is specific to
the overlap procedure (however, this step is not specific to this particular example).

(1) Use OLS to estimate model (2.8) of the main paper. Store the estimates β̂n = (
β̂n,0, β̂n,1, β̂n,2

)′
and

their corresponding standard errors (clustered by school in this example), as well as the fitted values{
ˆScorei

}n

i=1
and the residuals

{
V̂i

}n

i=1
.

(2) For each i ∈ {1, . . . , n}, generate

Score∗
i = ˆScorei + V̂i

G∑
g=1

W ∗
g I (Schooli = g),

where School is a categorical variable taking values in {1, . . . , G} (here, G is the number of schools),

and
{
W ∗

g

}G

g=1
are drawn from a bootstrap weight distribution (in this example, we use the Rademacher

distribution, which places equal probability on −1 and 1; see Davidson and Flachaire, 2008).21

(3) Use OLS to estimate

Score∗
i = β0Controli + β1Groupi + β2Individuali + X′

iη + errors.

Store the estimates β̂∗
n = (

β̂∗
n,0, β̂

∗
n,1, β̂

∗
n,2

)′
and their corresponding standard errors.

(4) Repeat Steps 2–3 B times, where B is a large number (we set B = 9,999 in this example).
(5) Find the smallest value of γ satisfying (2.5) of the main paper. This can be accomplished using the

following algorithm:
(a)Pick a candidate value for γ .
(b)For each b ∈ {1, . . . , B}, calculate the maximum lower endpoint

L
∗b = max

s∈K

{(
β̂∗b

n,s − β̂n,s

) − γ × se
(
β̂∗b

n,s

)}
and the minimum upper endpoint

U ∗b = min
s∈K

{(
β̂∗b

n,s − β̂n,s

) + γ × se
(
β̂∗b

n,s

)}
,

where β̂∗b
n is the bth replicate of β̂∗

n .

(c)Calculate α̂ = #
(
L

∗b
> U ∗b

)
/B.

(d)Iterate over Steps 5b–5c, using a root finder to solve (α − α̂) − I (α < α̂) = 0.22

Figure S1 displays α̂ as a function of γ for this example (the horizontal dotted lines here correspond to α

= 0.05). Notice that α̂ is weakly decreasing in γ .23 Using the algorithm in Step 5 above, we obtain a value

21 See also Webb () if G ≤ 12.
22 The basic idea is to minimize the distance |α − α̂| while ensuring that α ≥ α̂ (notice that the indicator function acts as

a penalty term here). If α < α̂ (e.g., points to the left of γ = 0.497216 in Figure S4b), then (α − α̂) − I (α < α̂) < −1; on
the other hand, if α ≥ α̂ (e.g., points at or to the right of γ = 0.497216 in Figure S4b), then 0 ≤ (α − α̂) − I (α < α̂) < 1.
Thus, (α − α̂) − I (α < α̂) is guaranteed to be closer to zero (in absolute value) if α ≥ α̂ than if α < α̂.

23 It is interesting to note that, with γ = 1.960 (which, under mild regularity conditions, would result in the uncertainty
intervals being asymptotically-valid 0.95-level confidence intervals), we have α̂ = 0. This suggests that making inferences
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Figure S4. Frequency of observing at least one pair of non-overlapping uncertainty intervals across
bootstrap replications (α̂) as a function of γ in the performance pay example.

of 0.497216 for γ (at this value of γ , we have α̂ = 499/9999 = 0.04990499 < α; with γ = 0.497215, we
have α̂ = 5000/9999 = 0.050005 > α). With B suitably large, α̂ can be made as close to α as one desires.

S4. Test Statistics for Charitable Giving Example

Table S2 displays T-statistics of the form (S.6) for each of the
(36+1

2

) = 666 relevant pairwise parameter
comparisons for the example in Section 3.1 of the main paper. The 17 T-statistics that are greater than 1.960
in absolute value are in bold.

based on the non-overlap of confidence intervals in this example would be conservative (in cases where k is larger, it is
likely that the opposite would be true).
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