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Summary We provide adaptive inference methods, based on ℓ1 regularization,
for regular (semi-parametric) and non-regular (nonparametric) linear functionals of
the conditional expectation function. Examples of regular functionals include average
treatment effects, policy effects, and derivatives. Examples of non-regular functionals
include average treatment effects, policy effects, and derivatives conditional on a co-
variate subvector fixed at a point. We construct a Neyman orthogonal equation for
the target parameter that is approximately invariant to small perturbations of the nui-
sance parameters. To achieve this property, we include the Riesz representer for the
functional as an additional nuisance parameter. Our analysis yields weak “double spar-
sity robustness”: either the approximation to the regression or the approximation to
the representer can be “completely dense” as long as the other is sufficiently “sparse”.
Our main results are non-asymptotic and imply asymptotic uniform validity over large
classes of models, translating into honest confidence bands for both global and local
parameters.
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S1. RELATED WORK

S1.1. Previous Learning Problems

The paper builds upon ideas in classical semi- and nonparametric learning theory with
low-dimensional X, using traditional smoothing methods [Van Der Vaart et al. (1991);
Newey (1994a); Bickel et al. (1993); Robins and Rotnitzky (1995); Van der Vaart (2000)],
that do not apply to the current high-dimensional setting. Our paper also builds upon
and contributes to the literature on modern orthogonal/debiased estimation and infer-
ence [Zhang and Zhang (2014); Belloni et al. (2011, 2014, 2015); Javanmard and Mon-
tanari (2014a,b, 2018); Van de Geer et al. (2014); Ning and Liu (2017); Chernozhukov
et al. (2015); Neykov et al. (2018); Ren et al. (2015); Jankova and Van De Geer (2015,
2016, 2018); Bradic and Kolar (2017); Zhu and Bradic (2017, 2018)], which focuses on
coefficients in high-dimensional linear and generalized linear regression models, without
considering the general linear functionals analyzed here.
The functionals we consider are different than those analyzed in Cai and Guo (2017).

The continuity properties of functionals we consider provide additional structure that we
exploit, namely the Riesz representer, an object that is not considered in Cai and Guo
(2017). Targeted maximum likelihood, Van Der Laan and Rubin (2006), based on machine
learners has been considered by Van der Laan and Rose (2011) and large sample theory
given by Luedtke and Van Der Laan (2016), Toth and van der Laan (2016), and Zheng et
al. (2016). Here we provide DML learners via regularized RR, which are relatively simple
to implement and analyze, and which directly target functionals of interest and learn the
RR automatically from the data.
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S1.2. De-biased Estimation

We build on previous work on debiased estimating equations constructed by adding
an influence function. Hasminskii and Ibragimov (1979) and Bickel and Ritov (1988)
suggest such estimators for functionals of a density. Newey (1994a) derives such scores as
a part of the computation of the semi-parametric efficiency bound for regular functionals.
Doubly robust estimating equations as in Robins et al. (1995) and Robins and Rotnitzky
(1995) have this structure. Newey et al. (1998, 2004) further develop theory in this vein,
in a low-dimensional nonparametric setting. In the regular case, Chernozhukov et al.
(2016, 2018) analyze the double robust/debiased learners in several high-dimensional
settings. However, analysis requires an explicit formula for the Riesz representer, used
in its estimation, which is often unavailable in closed form (or may be inefficient when
restrictions such as additivity are used—see Section S3 for the explicit definition of the
additive model and structure of representers in that case). In contrast, here we estimate
the Riesz representer automatically from the moment conditions that characterize it, and
extend the analysis to cover non-regular functionals.
Various papers have considered direct estimation of the Riesz representer. Among these

papers, ours is the first to present a framework for direct estimation of the Riesz represen-
ter of a broad class of linear functionals, in a high-dimensional setting, without requiring
strong Donsker class assumptions. The earliest reference of which we know is Robins et al.
(2007), a comment on another paper, which consider only the global average treatment
effect (ATE). Zhu and Bradic (2017) show that it is possible to attain

√
n-consistency

for the coefficients of a partially linear model when the regression function is dense. Our
results apply to a much broader class of functionals, and allow for tradeoffs in accu-
racy of estimating the regression function and the Riesz representer. Newey and Robins
(2018) present and analyze estimators based on regression splines, while we present and
analyze sparse estimators methods for the high-dimensional setting. The Athey et al.
(2018) estimator of the ATE is based on sparse linear regression and on approximate
balancing weights when the regression is linear and strongly sparse. Our results apply to
a much broader class of linear functionals and allow the regression learner to converge
at relatively slow rates, including the dense case or approximately sparse case.
Since the first version of this paper was posted online, subsequent work has built upon

its insights. Hirshberg and Wager (2019) build upon the present work by considering
the problem of learning regular functionals when the regression function belongs to a
Donsker class. They utilize the orthogonal representations proposed in this paper and
Chernozhukov et al. (2016), and extend the initial version of the paper, Hirshberg and
Wager (2017), that had only considered the ATE example. Our approach does not re-
quire a Donsker class assumption, which is too restrictive in our setting. Hirshberg and
Wager (2018) consider the average derivative functional in a single index model, ana-
lyzing a variant of the estimator proposed here, adapted to the single-index regression
structure. Rothenhäusler and Yu (2019) builds upon our work, analyzing global aver-
age derivative functionals, and proposing practical Lasso-type solvers for estimating the
RR. Our approach is also practical; the RR estimation is based on a Dantzig selector
type estimator, which is easy to compute by linear programming methods. In follow-up
work, Chernozhukov, Newey, and Singh (2018) consider different Lasso-type solvers for
estimating RR. Compared to Rothenhäusler and Yu (2019), our analysis covers a much
broader collection of functionals, and deals with both local and global versions.
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S1.3. Localized Functionals

A new development incorporated in this version of the paper is the inclusion of local and
localized functionals, such as average treatment/policy effects and derivatives localized
to certain neighborhoods of a value of a low-dimensional covariate subvector. In low-
dimensional nonparametrics, the study of such functionals, called “partial means” goes
back, e.g., to Newey (1994b). In contrast, here we treat the case where the ambient
covariate space is very high-dimensional, but we localize with respect to a value of a low-
dimensional subvector. Moreover, we must rely on orthogonalized estimating equations
to eliminate the regularization biases arising due to the high-dimensional ambient space.
Various papers have studied debiased moment equations for certain localized functionals:
conditional average treatment effect (CATE), continuous treatment effect (CTE), and
regression derivative at a point. We instead present a unified analysis for the general
class of localized functionals. Moreover, we cover local effects that are not perfectly
localized, which may be more robust objects from an inferential point of view, as argued
in Genovese and Wasserman (2008).
The debiased CATE and CTE literature is vast. Prominent examples of the debiased

CATE literature include Wang et al. (2010), van der Laan and Luedtke (2014), Luedtke
and Van Der Laan (2016), Nie and Wager (2017), Lee et al. (2017), and most recently
Kennedy (2020). Independently and contemporaneously to the present version of the
paper, Fan et al. (2019) and Zimmert and Lechner (2019) define and study perfectly
localized average treatment effects with high-dimensional confounders. Prominent exam-
ples of the debiased CTE literature include Rubin and van der Laan (2006), Dı́az and
van der Laan (2013), Galvao and Wang (2015), Kennedy et al. (2017), Kallus and Zhou
(2018), and Colangelo and Lee (2020). These works develop inference on perfectly lo-
calized average potential outcomes with continuous treatment effects, using a different
approach than what we develop here. Our development is complementary as it covers a
much broader collection of functionals.
The debiased literature on regression derivative at a point is more recent. Guo and

Zhang (2019) study inference on the regression derivative ∂γ1(d) at a point d in a high-
dimensional regression model, γ(D,Z) = γ1(D)+ γ2(Z), where D is univariate covariate
of interest and Z is a high-dimensional vector of control covariates. Our analysis is again
complementary: it covers objects like this, but also covers more general functionals like
E[∂dγ(D,Z) | D = d], either without additivity structure or without requiring D to be
one-dimensional. Semenova and Chernozhukov (2021) apply low-dimensional series re-
gression estimators on top of the pre-estimated unbiased orthogonal signal of treatment
and partial derivative effects, where pre-estimation of the orthogonal signal is done in
the high-dimensional setting. Our analysis has a rather different structure (without re-
liance on close-form solutions for Riesz representers), and kernels are used for localization
instead of series.
Our work complements existing work that considers the problem of estimating general

nonpathwise differentiable functionals like the localized ones here. Early contributions
include Robins and Rotnitzky (2001), Van Der Laan and Dudoit (2003), and Rubin and
van der Laan (2005). More recently, Athey et al. (2019) consider this issue in the context
of generalized random forests. Foster and Syrgkanis (2019) present a general theory, but
without inference guarantees. Unlike previous work, we analyze finite sample Gaussian
approximation.
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S2. NOTATION AND PRELIMINARIES

S2.1. Notation glossary

Let W = (Y,X ′)′ be a random vector with law P on the sample space W, and Wn
1 =

(Yi, Xi)
n
i=1 denote i.i.d. copies of W . The law of X is denoted by F . All models and

probability measure P can be indexed by n, the sample size, so that the models and
their dimensions and parameters determined by P change with n. We use notation from
the empirical process theory, see Van Der Vaart and Wellner (1996). Let EIf denote the
empirical average of f(Wi) over i ∈ I ⊂ {1, ..., n}: EIf := EIf(W ) = |I|−1

∑
i∈I f(Wi).

Let GI denote the empirical process over f ∈ F : W → Rp and i ∈ I, namely GIf :=
GIf(W ) := |I|−1/2

∑
i∈I(f(Wi) − Pf), where Pf := Pf(W ) :=

∫
f(w)dP (w). Denote

the Lq(P ) norm of a measurable function f :W → R and also the Lq(P ) norm of random
variable f(W ) by ∥f∥P,q = ∥f(W )∥P,q. We use ∥ · ∥q to denote ℓq norm on Rd. For a
differentiable map x 7→ f(x), from Rd to Rk, we use ∂x′f(x) to abbreviate the partial
derivatives (∂/∂x′)f(x), and we use ∂x′f(x0) to mean ∂x′f(x) |x=x0 , etc. We use x′ to
denote the transpose of a column vector x. We use divd to denote the divergence of scalar

function: divd g =
∑dim(d)

j=1 ∂dj
g(d). We say that a ≲ b under the asymptotics with an

index n→∞ if a ≤ Cb for all n sufficiently large, and a ≍ b if both a ≲ Cb and b ≲ Ca
for all n sufficiently large, where C ≥ 1 is a positive constant that does not depend on n.

S2.2. Preliminaries

To prove the first couple of lemmas we recall the following definitions and results. Given
two normed vector spaces V and W over the field of real numbers R, a linear map
A : V →W is continuous if and only if it has a bounded operator norm:

∥A∥op := inf{c ≥ 0 : ∥Av∥ ≤ c∥v∥ for all v ∈ V } <∞,

where ∥·∥op is the operator norm. The operator norm depends on the choice of norms for
the normed vector spaces V and W . A Hilbert space is a complete linear space equipped
with an inner product ⟨f, g⟩ and the norm |⟨f, f⟩|1/2. The space L2(P ) is the Hilbert space
with the inner product ⟨f, g⟩ =

∫
fgdP and norm ∥f∥P,2. The closed linear subspaces of

L2(P ) equipped with the same inner product and norm are Hilbert spaces.
Hahn–Banach extension for normed vector spaces. If V is a normed vector

space with linear subspace U (not necessarily closed) and if ϕ : U 7→ K is continuous
and linear, then there exists an extension ψ : V 7→ K of ϕ which is also continuous and
linear and which has the same operator norm as ϕ.
Riesz–Frechet representation theorem. Let H be a Hilbert space over R with an

inner product ⟨·, ·⟩, and T a bounded linear functional mapping H to R. If T is bounded
then there exists a unique g ∈ H such that for every f ∈ H we have T (f) = ⟨f, g⟩. It is
given by g = z(Tz), where z is unit-norm element of the orthogonal complement of the
kernel subspace K = {a ∈ H : Ta = 0}. Moreover, ∥T∥op = ∥g∥, where ∥T∥op denotes
the operator norm of T , while ∥g∥ denotes the Hilbert space norm of g.
Radon–Nykodym derivative. Consider a measure space (X ,Σ ) on which two σ-

finite measure are defined, µ and ν. If ν ≪ µ (i.e. ν is absolutely continuous with respect
to µ), then there is a measurable function f : X → [0,∞), such that for any measurable
set A ⊆ X , ν(A) =

∫
A
f dµ. The function f is conventionally denoted by dν/dµ.

Integration by parts. Consider a closed measurable subset X of Rk equipped with
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Lebesgue measure V and piecewise smooth boundary ∂X , and suppose that v : X → Rk

and ϕ : X → R are both C1(X ), then∫
X
φdiv v dV =

∫
∂X

φv′dS −
∫
X
v′ gradφdV,

where S is the surface measure induced by V .

S3. STRUCTURE OF FUNCTIONALS AND THEIR SCORES IN LEADING
EXAMPLES

We see that the key quantities in the main inference results are the operator norm L of
the linear functional and the standard deviation σ and kurtosis κ/σ of the score ψ0. In
this section we establish bounds on these quantities in the key Examples 2.1, 2.2, 2.3,
and 2.4, focusing on either unrestricted or additive nonparametric models.

S3.1. Structure of Riesz representers for unrestricted and additive models

Below we derive linear representers through change of measure and integration by parts.
These representers are universal since they apply to the unrestricted model, where Γ̄ =
L2(F ). We remark here that these representers are universal, since they can represent θ0
even when Γ̄ ̸= L2(F ), if they exist. These universal representers are not minimal unless
Γ̄ = L2(F ). Theorem 4.2 implies that it is better to use the minimal representer than
the universal representer to attain full semi-parametric efficiency (unless Γ = L2(F )).
Consider the following (some well-known) candidates for universal linear representers

in Examples 2.1, 2.2, 2.3, and 2.4:

α0(x; ℓ) = [(1(d = 1)− 1(d = 0))/P(D = d | Z = z)]ℓ(x); (S.1)

α0(x; ℓ) = [d(F1(x)− F0(x))/dF (x)]ℓ(x); (S.2)

α0(x; ℓ) = [d(F1(x)− F (x))/dF (x)]ℓ(x), F1 = Law(T (X)); (S.3)

α0(x; ℓ) = −(divd(ℓ(x)t(x)f(d|z))/f(d|z), f(d|z) = pdf of D given Z = z; (S.4)

treated as formal maps α0 : X → R∪{na}, where dFk/dF denotes the Radon–Nykodym
derivative of measure Fk with respect to F on support(ℓ), divd denotes the divergence
of scalar function:

divd g(d, z) =

p1∑
j=1

∂dj
g(d, z),

and na is “not available”. The Radon–Nykodym derivatives exist if Fk is absolutely
continuous with respect to F on support(ℓ).

Lemma 3.1. (Universal representers for key examples) In Examples 2.1, 2.2, 2.3,
and 2.4, (i) If α0(X; ℓ) is real-valued a.s. and α0(·; ℓ) ∈ L2(F ), then it is the universal
representer for the corresponding linear functional γ 7→ θ(γ), and the latter is continuous.
In Example 2.4, we require that d 7→ γ(x)ℓ(x)t(x)f(d|z) is continuously differentiable on
the support set Dz = support(D|Z = z), and vanishes on its boundary ∂Dz, which is as-
sumed to be piecewise-smooth, for each z ∈ Z. Further, if Γ̄ = L2(F ), the representer is
minimal; otherwise, the minimal representer α⋆

0 is obtained by projecting α0 onto Γ̄. (ii)
There are examples of P , exhibited in the proof of this lemma, such that linear functionals
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in Examples 2.1, 2.2, 2.3, and 2.4 can be continuous on Γ̄ ̸= L2(F ), but α0(X; ℓ) = na
with positive probability.

Part of the lemma is well known (for example, the α0(X; ℓ) representer for ATE is the
Horvitz-Thompson transformation), while a part of lemma appears to be new. The first
part of the lemma provides a simple sufficient condition to guarantee continuity of the
target functionals. It recovers well-known sufficient conditions for nonparametric identi-
fication of various functionals. The second part of the lemma states that this condition
is not necessary, and that target functionals can be continuous on some subsets of L2(F )
without these conditions.
The following is a useful result in view of the wide practical use of additive models,

which model the regression function as additive in the two sets of vector components
x1 and x2 of x. (There is not much loss in generality in considering two sets rather
than multiple sets). It is an important setting where Γ is not dense in L2(F ) and where
minimal representers are not equal to the universal representers.

AM Suppose that the regression function is additive in components x1 and x2 of x:

x 7→ γ(x) = γ1(x1) + γ(x2), x = (x′1, x
′
2)

′ ∈ X ,

where γ1 ∈ Γ01, a dense subset of L2(F1), where F1 denotes the probability law of
X1. The linear functional m0 and the weighing function ℓ depends only on the first
component, namely m(w, γ; ℓ) = m(w, γ1; ℓ) and ℓ(x) = ℓ(x1).

The following lemma shows that we can construct representers for additive models by
taking conditional expectation of a universal representer. We can immediately see that
the minimal representers can be generated as conditional expectations of the universal
representers.

Lemma 3.2. (Order-preserving, contractive representers for additive models)
Work with AM and assume α0(·; ℓ) ∈ L2(F ). Then on γ ∈ Γ,

θ(γ) = θ(γ1) =

∫
α⋆
0(x1)γ1(x1)dF (x1), α⋆

0(x1) = E[α0(X) | X1 = x1],

where α0 is any linear representer for γ 7→ θ(γ) on Γ. In particular, the conditional
expectation operator is order-preserving, and it induces the contraction for all Lq(P )
norms for all q ∈ [1,∞]:

∥α⋆
0∥P,q ≤ ∥α0∥P,q.

The latter properties are useful in characterizing the structure of the global and local
functionals under condition AM.

S3.2. Structure of global functionals and scores in key examples

Here we develop bounds on the key quantities: the standard deviation σ of the score, the
kurtosis κ/σ, and the modulus of continuity L. In the regular case, these quantities are
bounded. Here we would like to study how the bounds depend on L, and we analyze the
non-regular cases arising from taking a sequence of models with L→∞.

To make key points, we focus on the case where either Γ̄ = L2(F ) or Γ̄ ⊂ L2(F ) with



DML with Riesz Representers S7

the additive model AM holding. Furthermore, we develop these bounds in the context of
Examples 2.1, 2.2, and 2.3, though the proofs are useful to characterize bounds in other
contexts. Our goal is to fix a weighting function ℓ, and to consider how a non-regularity
L→∞ can arise from modeling quantities like

1/P(D = d | Z), (d(F1 − F0)/dF ) ◦X, (d(F1 − F )/dF ) ◦X, (S.5)

taking high values due to the denominator taking values close to zero. We may charac-
terize such cases as the weakening of overlap of supports of relevant distributions (e.g.,
F puts small mass on points where F1 puts a lot of mass). In Example 2.4, a similar
issue could arise due to 1/f(D|Z) taking high values; for brevity, we don’t analyze this
source of non-regularity for Example 2.4 and focus on localization as the source.
In the sequel, we say that a ≲ b under the asymptotics with an index n→∞ if a ≤ Cb

for all n sufficiently large, and a ≍ b if both a ≲ Cb and b ≲ Ca for all n sufficiently
large, where C ≥ 1 is a positive constant that does not depend on n.

Lemma 3.3. (Structure of global average effects functionals and scores)
Suppose that either (a) Γ̄ = L2(F ) or (b) that Γ̄ ⊂ L2(F ) with the additive model AM
holding. Suppose that the universal Riesz representers α0(X) = α0(X; ℓ) given in formu-
lae (S.1), (S.2), (S.3) for Examples 2.1, 2.2, and 2.3 exist and are in L2(F ). Suppose
that α⋆

0(X) = α0(X) in the case (a) and α⋆
0(X1) = E[α⋆

0(X) | X1] in the case (b) obey:

∥α⋆
0∥P,3 ≤ c(∥α⋆

0∥2P,2 ∨ 1), (S.6)

for some finite constant c and that

U1 = m(W,γ⋆0 (X))− Em(W,γ⋆0(X)) and U2 = Y − γ⋆0 (X)

obey the bounded moment and bounded heteroscedasticity conditions:

(E[|U1|q])1/q ≤ c̄, 0 < c ≤ (E[|U2|q|X])1/q ≤ c̄ a.s., for q ∈ {2, 3},

for some finite positive constants c and c̄. Then

cL ≤ σ ≤ c̄
√

1 + L2, κ ≤ c̄(1 + c(L2 ∨ 1)).

If, as n → ∞, we have that L → ∞ and the constants (c, c, c̄) are bounded away from
zero and above, then

(κ/σ) ≲ σ ≍ L→∞.

Condition (S.6) allows the L3(F ) norm of the representer to be much larger than the
L2(F ) norm, but limits how much larger. For instance, consider Example 2.1. Suppose
Γ̄ = L2(F ) so that α⋆ = α0 and that the propensity score P [D = 1 | Z] is uniformly
distributed on [π, 1/2]. Then ∥α0∥P,2 ≍ (1/π)1/2 and ∥α0∥P,3 ≍ (1/π2)1/3 ≪ ∥α0∥2P,2

when π ↘ 0, so the condition is easily met.

S3.3. Structure of local and localized functionals and scores in key examples

Here we focus on local functionals and develop bounds that relate key quantities: the
standard deviation σ of the score, the kurtosis κ/σ, and the modulus of continuity L.
Our first goal is examine how the localization of the weighting function ℓ creates the

non-regularity L → ∞. Our inference theory outlined above covers local functionals
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provided L/
√
n is small, and it also covers perfectly localized functionals provided the

scaled localization bias is small:
√
n(θ(γ⋆0 ; ℓh)− θ(γ⋆0 ; ℓ0))/σ → 0.

We provide a bound on the localization bias in terms of the smoothness and the kernel
order. The latter additional requirement means that the inference on perfectly localized
functionals is less robust than the inference on the local functionals (analogously, to the
point that was made by Genovese and Wasserman (2008)).

Lemma 3.4. (Structure of local average effects functionals and scores)
Suppose that either (a) Γ̄ = L2(F ) or (b) Γ̄ ⊂ L2(F ) with the additive model AM hold-
ing. Suppose the universal Riesz representer α0(X; 1), corresponding to the flat weight-
ing function ℓ = 1, given in formulae (S.1), (S.2), and (S.3), corresponding to Exam-
ples 2.1, 2.2, and 2.3, exists and obeys

0 < α ≤ α0(X; 1) ≤ ᾱ, a.s. (S.7)

Suppose for some h0 > 0, we have that Nh0(d0) = {d : ∥d − d0∥∞ ≤ h} ⊂ D. Suppose
that for ℓ = ℓh with h ≤ h0:

U1 = m(W,γ⋆0(X); ℓ)− Em(W,γ⋆0 (X); ℓ) and U2 = Y − γ⋆0(X),

obey the bounded heteroscedastic moment conditions:

(E[|U1|q])1/q ≤ c̄∥ℓ∥P,q, 0 < c ≤ (E[|U2|q|X])1/q ≤ c̄ a.s., for q ∈ {2, 3}.

Suppose that the pdf fD of D obeys the bounds:

0 < f ≤ fD(d) ≤ f̄ and ∥∂fD(d)∥1 ≤ f̄ ′, for all d ∈ Nh0(d0).

Then the non-asymptotic bounds stated in the proof of this lemma hold. In particular, if
h↘ 0 and (α, ᾱ, c, c̄, f , f̄ , f̄ ′, h0) are bounded away from zero and bounded above, then

(κ/σ) ≲ h−p1/6 ≲ σ ≍ L ≍ ∥ℓ∥P,2 ≍ h−p1/2 →∞.

The lemma shows that the main source of non-regularity is the bandwidth h going to
zero. The condition (S.7) shuts down the previous source of non-regularity, and says that
the quantities in (S.5) are now bounded from below and above.
It is possible to analyze the case where both sources of non-regularity are present

and to bound behavior of σ, κ/σ, and L. Our general inference theory allows for such
complicated sources of nonregularity as long as these parameters are much smaller than√
n.
We now turn to characterization of the local average derivatives.

Lemma 3.5. (Structure of local average derivative functionals and scores)
Suppose that either (a) Γ̄ = L2(F ) or that (b) Γ̄ ⊂ L2(F ) with the additive model AM
holding. Suppose the universal Riesz representer α0(X; ℓh) given in formula (S.4) exists
for all 0 < h < h0, where h0 is a constant. Suppose that the errors

U1 = m0(W,γ
⋆
0 (X))ℓh(X)− Em0(W,γ

⋆
0 (X))ℓh(X) and U2 = Y − γ⋆0 (X)

obey the bounded heteroscedastic moment conditions:

(E[|U1|q])1/q ≤ c̄∥ℓh∥P,q, 0 < c ≤ (E[|U2|q|X])1/q ≤ c̄, a.s., q ∈ {2, 3}.
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Suppose that Nh(d0) = {d : ∥d− d0∥∞ ≤ h} ⊂ D and that for all d ∈ Nh(d0):

0 < f ≤ fD(d | Z) ≤ f̄ , ∥∂fD(d | Z)∥1 ≤ f̄ ′, t(d, Z) ≤ t̄, |divdt(d, Z)| ≤ t̄′ a.s.,

E(t2(d,X)|D = d) ≥ t2 for the case (a), E((E[t(X) | X1])
2|D = d) ≥ t2 for the case (b).

Then the non-asymptotic bounds stated in the proof of this lemma hold. In particular,
if h↘ 0 and (c, c̄, t, t, t̄′, f , f , f̄ ′) are bounded away from zero and bounded above, then

κ/σ ≲ h−p1/6 ≲ σ ≍ L ≍ h−p1/2−1 →∞.

We next characterize the bias of approximating the perfectly localized parameter. In
what follows the norm of a tensor T = ∂v/(∂d)v is defined as the injective norm

|T |op = sup
∥u1∥2≤1,...,∥uv∥2≤1

|⟨T, u1 ⊗ ....⊗ uv⟩|.

Lemma 3.6. (Structure of bias in perfect localization) Suppose that for some
h0 > 0, d 7→ m(d) = E[m(W,γ⋆0) | D = d] and d 7→ fD(d) are continuously differentiable
on Nh0(d0) to the integer order sm, and for v := sm ∧ o and ∂vd denoting the tensor
∂v/(∂d)v we have

sup
d∈Nh0

(d0)

∥∂vd(m(d)fD(d))∥op ≤ ḡv, sup
d∈Nh0

(d0)

∥∂vdfD(d)∥op ≤ f̄v, inf
d∈Nh0

(d0)
fD(d) ≥ f.

In addition, assume

m(d0)fD(d0) ≤ ḡ.
We have that for all h < h1 ≤ h0,

|θ(γ⋆0 ; ℓh)− θ(γ⋆0 ; ℓ0)| ≤ Chv,

where the constant C and h1 depend only on K, v, ḡv, f̄v, f, ḡ. If the latter constants are
bounded away from above and zero, as h↘ 0, we have |θ(γ⋆0 ; ℓh)− θ(γ⋆0 ; ℓ0)| ≲ hv.

S4. PROOFS FOR SECTION 2

S4.1. Proof of Lemma 2.1

We note that Γ = span(Γ0) is a linear subspace of L2(F ), and Γ̄ is a closed subspace
by definition. Therefore, Γ̄ is a Hilbert space with norm g 7→ ∥g∥P,2 and inner product
(f, g) 7→ ⟨f, g⟩ =

∫
fgdF .

To show claim (i), we note that by the Hahn–Banach extension theorem, the operator
θ : Γ→ R can be extended to θ̃ : Γ̄→ R such that ∥θ̃∥op = ∥θ∥op. By the Riesz–Frechet

theorem there exists a unique representer α⋆
0 such that θ̃(γ) = ⟨γ, α⋆

0⟩ on γ ∈ Γ̄ and
∥θ̃∥op = ∥α⋆

0∥P,2.
To show claim (ii), we are given a linear representer α0. Denote by α⋆

0 the projection
of α0 onto Γ̄. Then γ 7→ φ(γ) := ⟨γ, α0⟩ = ⟨γ, α⋆

0⟩ agrees with γ 7→ θ(γ) on γ ∈ Γ.
Extend θ to Γ̄ by defining θ̃(γ) = φ(γ) = ⟨γ, α⋆

0⟩ for γ ∈ Γ̄ \ Γ, which is well-defined by
Cauchy-Schwarz inequality. Then ∥φ∥op = ∥α⋆

0∥P,2 ≤ ∥α0∥P,2 <∞, since the orthogonal
projection reduces the norm. Further,

∞ > ∥α⋆
0∥P,2 = sup

γ∈Γ̄\{0}
|⟨γ, α⋆

0⟩|/∥γ∥P,2 = sup
γ∈Γ̄\{0}

|θ̃(γ)|/∥γ∥P,2 = ∥θ̃∥op.
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Hence α⋆
0 is a representer for the extension θ̃, and the Riesz–Frechet theorem implies

that α⋆
0 is unique.2

S5. DETAILS FOR SECTION 3

S5.1. Practical implementation details

In practice we use the following generic algorithm for computing GDS estimators over
subsamples A. In particular, for regression we set m(W, b) = Y b(X).

1 Obtain initial estimate t̂ using a low-dimensional sub-dictionary b0 of b:

t̂← (t̂′0, 0
′)′; t̂0 = Ĝ−1M̂0; M̂0 ← EAm(W, b0); Ĝ0 ← EAb0b

′
0;

Compute the empirical moments for the full dictionary:

M̂ ← EAm(W, b); Ĝ← EAbb
′.

2 Update the diagonal normalization matrix:

D̂2 ← diag
(
EA[{b(X)b(X)′t̂−m(W, b)}2j ]; j = 1, ..., p

)
.

3 Update the GDS estimate, using the current estimate as the starting point in the
algorithm:

t̂← argmin ∥t∥1 : ∥D̂−1(M̂ − Ĝt)∥∞ ≤ λ; λ = cΦ−1(1− a/2p)/
√
n,

4 Iterate on steps 2 and 3 several times. Return the final estimate t̂.

We note the following. First, theoretical arguments similar to Belloni et al. (2012)
suggest that the data-driven algorithm behaves as the algorithm that knows the ideal
D, since iterations yield ∥DD̂−1 − I∥∞ →P 0. The argument works provided we can set
c > 1.1 . In practice, however, c = 1 works just fine from the outset. We set a small, e.g.
a = 0.1.

Second, Chernozhukov et al. (2013) discuss finer data-driven choices of penalty levels
based on the Gaussian or empirical bootstraps:

λ = c× [(1− α)− quantile(∥D̂−1(M̂∗ + Ĝ∗t)∥∞ | (Wi)i∈Ic
k
)],

where M̂∗ and Ĝ∗ are bootstrap copies of M̂ and Ĝ. This method yields an even lower
theoretically valid penalty levels, because they adapt to the correlation structure much
better. For instance, for highly-correlated empirical moments, the penalty level produced
by this method can be substantially lower than the simple plug-in choice made above
(in the extreme case, where the moments are perfectly correlated, the penalty level of
Chernozhukov et al. (2013) approximates cΦ−1(1− a/2))/

√
n).

S5.2. Partial difference

Consider a simplification of Example 2.4, average derivative:

θ⋆0 =

∫
∂dγ

⋆
0(d, z)ℓ(x)dF (x).

For nonparametric regression estimators that are linear in a dictionary b(d, z), e.g. GDS
and Lasso, the average derivative is straightforward to compute: apply the learned co-
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efficients β̂ to the derivative of the dictionary ∂db(d, z), and average across observations
using weighting ℓ(x) = ℓ(d, z).

Random forest is an example of a nonparametric regression estimator that is not
differentiable. A neural network is differentiable, but its derivative at each observation
may be difficult to access when using a black-box implementation. For this reason, when
using random forest or neural network, we use an average partial difference approximation
of the average derivative.

Specifically, consider the average partial difference functional

θ∗0 =

∫
[γ⋆0(d+∆/2, z)− γ⋆0 (d−∆/2, z)]

1

∆
ℓ(x)dF (x).

The theory developed for Example 2.3, policy effect from transporting X, directly applies
to average partial difference. In practice, we take ∆ to be one fourth of the standard
deviation of D.

There is an important connection between average derivative and average partial dif-
ference when using a nonparametric regression estimator that is linear in a dictionary
b(d, z), e.g. GDS and Lasso. If the dictionary b(d, z) is quadratic in d, then the aver-
age derivative estimate must be numerically identical to the average partial difference
estimate. The specification from Semenova and Chernozhukov (2021) that we use when
estimating average price elasticity of gasoline is quadratic in log price. Therefore Table 3
presents average partial difference estimates that perfectly coincide with average deriva-
tive estimates for GDS and Lasso, and that approximate average derivative estimates for
random forest and neural network.

S5.3. Empirical results without debiasing

We present tables analogous to those in Section 3 without debiasing. Tables 1, 2, and 3
in the supplement correspond to Tables 1, 2, and 3 in the main text, respectively.

Table 1. Average treatment effect of 401(k) eligibility on net financial assets without
debiasing. Localized average treatment effects are reported by income quintile groups.
The regression is estimated by GDS or Lasso. Standard errors are reported in parentheses.
Income quintile N treated N untreated GDS Lasso

All 3682 6187 3763.35 (31.01) 4526.42 (42.33)
1 272 1702 2604.14 (8.05) 2581.88 (26.53)
2 527 1447 126.69 (5.92) 298.56 (23.29)
3 755 1219 2819.64 (13.94) 2536.49 (28.56)
4 962 1012 5996.15 (57.05) 3287.30 (84.56)
5 1166 807 4528.12 (103.84) 6905.36 (159.28)
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Table 2. Average treatment effect of 401(k) eligibility on net financial assets without
debiasing. Localized average treatment effects are reported by income quintile groups.
The regression is estimated by random forest or neural network. Standard errors are
reported in parentheses.
Income quintile N treated N untreated Random forest Neural network

All 3682 6187 10543.48 (178.37) 7807.97 (336.42)
1 272 1702 4378.26 (134.08) 4266.68 (308.06)
2 527 1447 1477.09 (329.52) 1281.15 (537.07)
3 755 1219 6997.80 (158.49) 5331.58 (336.25)
4 962 1012 12854.02 (467.54) 10234.88 (807.86)
5 1166 807 26845.23 (749.52) 21426.42 (1615.20)

Table 3. Estimated average derivative (price elasticity) of gasoline demand without debi-
asing. Localized average derivatives are reported by income quintile groups. The regres-
sion is estimated by GDS, Lasso, random forest, or neural network. Standard errors are
reported in parentheses.
Income quintile N GDS Lasso Random forest Neural network

All 5001 -0.53 (0.00) -0.06 (0.00) -0.09 (0.02) 0.17 (0.01)
1 1001 -0.55 (0.01) 0.00 (0.00) -0.26 (0.07) 0.18 (0.03)
2 1000 -0.34 (0.01) 0.00 (0.00) -0.15 (0.07) 0.41 (0.03)
3 1000 -0.44 (0.01) 0.00 (0.00) -0.30 (0.06) -0.21 (0.03)
4 1000 -0.22 (0.01) 0.00 (0.00) -0.15 (0.07) 0.23 (0.04)
5 1000 -0.05 (0.00) 0.00 (0.00) 0.00 (0.07) 0.61 (0.02)

S6. PROOFS FOR SECTION 4

S6.1. Proof of Theorem 4.1

The proof uses empirical process notation: GI denotes the empirical process over f ∈ F :
W → Rp and I ⊂ {1, ..., n}, namely

GIf := GIf(W ) := |I|−1/2
∑
i∈I

(f(Wi)− Pf), Pf := Pf(W ) :=

∫
f(w)dP (w).

Step 1. We have a random partition (Ik, I
c
k) of {1, ..., n} into sets of size m = n/K

and n− n/K. Let

θ̄k = θ0 − EIkψ0(W ).

Observe that in Lemma 4.1, derivatives don’t depend on θ. Hence for all θ,

∂βψ(W, θ;β0, ρ0) = −m(W, b) + ρ0
′b(X)b(X) =: ∂βψ0(W )

∂ρψ(W, θ;β0, ρ0) = −b(X)(Y − b(X)′β0) =: ∂ρψ0(W )

∂2βρ′ψ(X, θ;β0, ρ0) = b(X)b(X)′ =: ∂2βρ′ψ0(W ),

where ψ0(W ) := ψ(W, θ0;β0, ρ0) as before.

Define the estimation errors u := β̂k−β0 and v := ρ̂k− ρ0. Using Lemma 4.1, we have
by the exact Taylor expansion around (β0, ρ0)

θ̂k = θ̄k − (EIk∂βψ0(W ))′u− (EIk∂ρψ0(W ))′v − u′(EIk∂
2
βρ′ψ0(W ))v.
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Consider the event E that Condition R holds. On this event:

(
√
m/σ)(θ̂k − θ̄k) = remk :=

4∑
j=1

remjk := −σ−1[GIk∂βψ0(W )]′u− σ−1[GIk∂ρψ0(W )]′v

−σ−1u′[GIk∂
2
βρ′ψ0(W )]v − σ−1

√
mu′[P∂2βρ′ψ0(W )]v,

where we have used that by Lemma 4.1

P∂βψ0(W )′u = 0, P∂ρψ0(W )′v = 0.

We now bound E[rem2
k1(E)] by analyzing each of its terms. By the law of iterated

expectations

E[rem2
k1(E)] = E[E[rem2

k1(E)|(Wi)i∈Ic
k
]] ≤ 4

4∑
j=1

E[E[rem2
jk1(E)|(Wi)i∈Ic

k
]]

using the fact that E
(∑J

j=1 Vj

)2
≤ J

∑J
j=1 EV

2
j for arbitrary random variables (Vj)

J
j=1.

Note that u and v are fixed once we condition on the observations (Wi)i∈Ic
k
. On the

event E , by condition R, rem1k, rem2k and rem3k have conditional mean 0 and conditional
variance given by

σ−1
√
V ar[rem1k | (Wi)i∈Ic

k
] = σ−1

√
V ar[(∂βψ0(W )′u) | (Wi)i∈Ic

k
]

≤ σ−1µσ
√
u′Gu = σ−1µσr1 ≤ δ,

σ−1
√
V ar[rem2k | (Wi)i∈Ic

k
] = σ−1

√
V ar[(∂ρψ0(W )′v) | (Wi)i∈Ic

k
]

≤ σ−1µ
√
v′Gv = σ−1µσr2 ≤ δ,

σ−1
√
V ar[rem3k | (Wi)i∈Ic

k
] = σ−1

√
V ar[u′b(X)b(X)′v | (Wi)i∈Ic

k
]

≤ σ−1µ(
√
v′Gv +

√
u′Gu)

≤ σ−1µ(σr2 + r1) ≤ δ.

On the event E , rem4k has conditional mean and conditional variance given by

|σ−1
√
mu′[P∂2βρ′ψ0(W )]v| ≤ σ−1

√
mσr3 ≤ δ,

√
V ar[rem4k | (Wi)i∈Ic

k
] = 0.

In summary,

E[rem2
k1(E)] ≤ 4[δ2 + δ2 + δ2 + δ2] = 16δ2.

Step 2.Here we bound the difference between θ̂ = K−1
∑K

k=1 θ̂k and θ̄ = K−1
∑K

k=1 θ̄k:

√
n/σ|θ̂ − θ̄| ≤

√
n√
m

1

K

K∑
k=1

√
m/σ|θ̂k − θ̄k| ≤

√
n√
m

1

K

K∑
k=1

remk.

By Markov inequality we have

P

(
1

K

K∑
k=1

remk > 4δ/∆

)
≤ P

(
1

K

K∑
k=1

remk > 4δ/∆ ∩ E

)
+ P(Ec)

≤ K−2E

( K∑
k=1

remk

)2

1(E)

∆2/(16δ2) + ϵ

≤ K−2K2 max
k

E(rem2
k1(E))∆2/(16δ2) + ϵ ≤ ∆2 + ϵ.
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And we have that
√
n/m =

√
K. So it follows that

|
√
n(θ̂ − θ̄)/σ| ≤ err = 4

√
Kδ/∆

with probability at least 1−Π for Π := ∆2 + ϵ.
Step 3. To show the second claim, let Z :=

√
n(θ̄−θ0)/σ. By the Berry–Esseen bound,

for some absolute constant A,

sup
z∈R
|P(Z ≤ z)− Φ(z)| ≤ A∥ψ0/σ∥3P,3n

−1/2 = A(κ/σ)3n−1/2.

The current best estimate of A is 0.4748, due to Shevtsova (2011). Hence, using Step 2,
for any z ∈ R, we have

P(
√
n(θ̂ − θ0)/σ ≤ z)− Φ(z) = P(

√
n(θ̂ − θ̄)/σ + Z ≤ z)− Φ(z)

= P(Z ≤ z +
√
n(θ̄ − θ̂)/σ)− Φ(z) ≤ P(Z ≤ z + err) + Π− Φ(z)

= P(Z ≤ z + err)− Φ(z + err) + Φ(z + err)− Φ(z) + Π

≤ A(κ/σ)3n−1/2 + err/
√
2π +Π,

where 1/
√
2π is the upper bound on the derivative of Φ. Similarly, conclude that

P(
√
nσ−1(θ̂ − θ0) ≤ z)− Φ(z) ≥ A(κ/σ)3n−1/2 − err/

√
2π −Π.

The result follows by noting that 4/
√
2π = 1.5957... < 2. 2

S6.2. Proof of Theorem 4.2

We shall verify the hypotheses of Van der Vaart (2000), Theorem 25.20.
Step 1. Suppose that W had Radon–Nykodym derivative dP under P with respect

to some measure µ. Consider the set for some ε > 0:

Sε = {δ measurable :W → R,
∫
δdP = 0, ∥δ∥∞ ≤ 1/(2ε)}.

Consider a parametric submodel (i.e. path) of the form

P =
{
dPτ (w) = dP (w) [1 + τδ (w)] : δ ∈ Sε}τ∈(0,ε).

It is standard to verify that δ is the score of dPτ , namely δ(w) = ∂τ log dPτ (w), and that
quadratic mean differentiability holds:∫

[(
√
dP τ −

√
dP )/τ − (δ/2)d

√
dP ]2dµ→ 0,

which implies that deviations from P are locally asymptotically normal. The collection
of scores Sε therefore form the tangent set of P at P .
Consider the parameter of interest:

θτ =

∫
m(w, γτ )dPτ ,

where γ⋆τ abbreviates the heavy notation γ⋆0,Pτ
, denoting the projection of Y on Γ̄ under

Pτ . We will also use γ⋆0 to denote γ⋆0,P .
Step 2 below shows the differentiability of the parameter with respect to τ :

θτ − θ0
τ

→
∫
ψ0δdP, for each δ ∈ Sε,
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where ψ0 is a score function. This is done in Step 2 below.
This score function belongs to the L2(P ) closure of the linear span of Sε:

span(Sε) =
{
δ ∈ L2(P ) :

∫
δdP = 0

}
.

so it follows that ψ0 is the projection of itself on the Sε and is therefore the only influence
function.
Step 2. Because δ is bounded by 1/(2ε), the dPτ and dP dominate each other so that

Γ̄ does not depend on τ . Let Eτ denote expectation under Pτ and E under P .
Then for some generic positive finite constant C

E
[
γ⋆τ (X)

2
]
≤ CEτ

[
γ⋆τ (X)

2
]
≤ CEτ

[
Y 2
]
≤ CE

[
Y 2
]
= C.

Note that by γ⋆τ , γ
⋆
0 ∈ Γ̄ and the previous inequality, as τ → 0

E [γ⋆τ (X) γ⋆0 (X)] = Eτ [γ
⋆
τ (X) γ⋆0 (X)] + o (1)

= Eτ [Y γ
⋆
0 (X)] + o (1) = E [Y γ⋆0 (X)] + o (1) = E

[
γ⋆0 (X)

2
]
+ o (1) .

Similarly we have

E
[
γ⋆τ (X)

2
]
= Eτ

[
γ⋆τ (X)

2
]
+ o (1) = Eτ [Y γ

⋆
τ (X)] + o (1)

= E [Y γ⋆τ (X)] + o (1) = E [γ⋆0 (X) γ⋆τ (X)] + o (1)→ E[γ⋆0(X)2].

Therefore it follows that

E
[
{γ⋆τ (X)− γ⋆0 (X)}2

]
= E

[
γ⋆τ (X)

2
]
+ E

[
γ⋆0 (X)

2
]
− 2E [γ⋆τ (X) γ⋆0 (X)]→ 0.

Note that |E [α0 (X) {γ⋆τ (X)− γ⋆ (X)} δ (W )]| ≤ CE [|α0 (X)| |γ⋆τ (X)− γ⋆0 (X)|]→ 0 so
that

E [m (W,γ⋆τ )]− E [m (W,γ⋆0 )] = E [α0 (X) {γ⋆τ (X)− γ⋆0 (X)}]
= Eτ [α0 (X) {γ⋆τ (X)− γ⋆0 (X)}]
− τE [α0 (X) {γ⋆τ (X)− γ⋆0 (X)} δ (W )]

= Eτ [α0 (X) {Y − γ⋆0 (X)}] + o (τ)

= Eτ [α0 (X) {Y − γ⋆0 (X)}]− E [α0 (X) {Y − γ⋆0 (X)}] + o (τ)

= τE [α0 (X) {Y − γ⋆0 (X)} δ (W )] + o (τ) .

Therefore E [m (W,γ⋆τ )] is differentiable at τ = 0 with

∂E [m (W,γ⋆τ )] /∂τ = E [α0 (X) {Y − γ⋆0 (X)} δ (W )] .

In addition, by mean-square continuity of m (W,γ⋆),

Eτ [m (W,γ⋆τ )]− E[m(W,γ⋆τ )] = τE [m (W,γ⋆τ ) δ(W )]

= τE [m (W,γ⋆0) δ(W )] + τE[{m(W,γ⋆τ )−m(W,γ⋆0 )}δ(W )]

= τE [m (W,γ⋆0) δ(W )] + o (τ) .

It follows that Eτ [m (W,γ⋆τ )]− E[m(W,γ⋆τ )] is differentiable with

∂{Eτ [m (W,γ⋆τ )]− E[m(W,γ⋆τ )]}
∂τ

= E [m (W,γ⋆0 ) δ(W )] = E[{m (W,γ⋆0 )− θ0}δ(W )].
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It then follows by the derivative of the sum being the sum of the derivatives that θτ =
Eτ [m(W,γ⋆τ )] is differentiable at τ = 0 and

∂θτ
∂τ

= E[ψ0(W )δ(W )].

2

S6.3. Proof of Lemma 4.2

First, we note that

∥tM0 ∥0 = |M| ≤ s := max{x : Ax−a ≥ ν} = (A/ν)1/a.

Define

tr := t0 − tM0 = t01(|t0| ≤ ν).
Note that

∥tr∥1 ≤ νs+
∫ ∞

s

Ax−adx = νs− 1

1− a
As−a+1 = νs− 1

1− a
νs =

a

a− 1
νs.

Then δ ∈ S(t0, ν) implies that, by the repeated use of the triangle inequality:

∥t0 + δ∥1 ≤ ∥t0∥1 ⇐⇒ ∥tM0 + δM∥1 + ∥tr0 + δMc∥1 ≤ ∥tM0 ∥1 + ∥tr0∥1

=⇒ ∥δMc∥1 − ∥tr0∥1 ≤ ∥tr0 + δMc∥1 ≤ ∥tM0 ∥1 − ∥tM0 + δM∥1 + ∥tr0∥1
=⇒ ∥δMc∥1 − ∥tr0∥1 ≤ ∥δM∥1 + ∥tr0∥1 =⇒ ∥δMc∥1 ≤ ∥δM∥1 + 2∥tr0∥1.

If 2∥tr∥1 ≤ ∥δM∥1, we have that ∥δMc∥1 ≤ 2∥δM∥1, so using the definition of the cone
invertibility factor we obtain

(k/s)∥δ∥1 ≤ ∥Gδ∥∞ ≤ ν =⇒ δ′Gδ ≤ ∥δ∥1∥Gδ∥∞ ≤ (s/k)ν2.

If 2∥tr∥1 ≥ ∥δM∥1, then ∥δ∥1 ≤ 6∥tr∥1

δ′Gδ ≤ ∥δ∥1∥Gδ∥∞ ≤ 6∥tr∥1ν ≤ 6
a

a− 1
sν2. 2

S6.4. Proof of Lemma 4.3

Consider the event R such that

∥ĝ(t0)∥∞ ≤ λ, ∥ĝ(t̂)∥∞ ≤ λ, (S.8)

holds. This event holds with probability at least 1− ϵ. The event R implies that ∥t̂∥1 ≤
∥t0∥1 by definition of t̂, which further implies that for δ = t̂− t0

∥Gδ∥∞ ≤ ∥(G− Ĝ)δ∥∞ + ∥Ĝδ∥∞
= ∥(G− Ĝ)δ∥∞ + ∥ĝ(t̂)− ĝ(t0)∥∞
≤ ∥G− Ĝ∥∞∥δ∥1 + ∥ĝ(t̂)∥∞ + ∥ĝ(t0)∥∞
≤ λ̄2B + 2λ ≤ ν̄.

Hence δ ∈ S(t0, ν) with probability 1− ϵ.
The first inequality now in the bound follows from the definition of s(t0): supδ∈S(t0,ν) δ

′Gδ ≤
s(t0)ν

2. The second bound follows by ∥δ∥1 ≤ 2B, δ′Gδ ≤ ∥Gδ∥∞∥δ∥1 ≤ ν2B. 2
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S6.5. Proof of Theorem 4.3 and Corollary 4.4

Application of Lemma 4.3 implies that with probability at least 1− 4ϵ, estimation errors
ũ = D−1

β (β̂A − β0) and ṽ = D−1
ρ (ρ̂A − ρ0) obey

ũ′Gũ ≤ C[(B2ℓ̃2s(D−1
β β0; ν)/n) ∧ (B2ℓ̃/

√
n)],

ṽ′Gṽ ≤ C[(B2ℓ̃2s(D−1
ρ ρ0; ν)/n) ∧ (B2ℓ̃/

√
n)],

where C is an absolute constant. Then

|u′Gu| ≤ µ2
Dũ

′Gũ, |v′Gv| ≤ µ2
Dσ

2ṽ′Gṽ.

The stated bounds then follow. Hence the guarantee R(δ) holds for ε = 1−K4ϵ provided
that for some large enough absolute C:

Cσ−1(
√
mσr3 + µr1(1 + σ) + µσr2) ≤ δ,

for r1, r2, and r3 given in the corollary. 2

S7. PROOFS FOR SECTION 5

S7.1. Proof of Theorem 5.1

Let ϕ(w, γ, α) = α(x)[y − γ(x)], ψ(w, γ, α, θ) = θ − m(w, γ) − ϕ(w, γ, α), ϕ̄(γ, α) =∫
ϕ(w, γ, α)F0(dw), and m̄(γ) =

∫
m(w, γ)F0(dw). Note that

ϕ̄(γ⋆0 , α
⋆
0) = 0, ϕ̄(γ⋆0 , α̂k) = 0, m̄(γ̂k − γ⋆0 ) = −ϕ̄(γ̂k, α⋆

0). (S.9)

Then we have

θ̂k − θ0 +
1

nk

∑
i∈Ik

ψ⋆
0(Wi) =

1

nk

∑
i∈Ik

{ψ(Wi, γ
⋆
0 , α

⋆
0, θ0)− ψ(Wi, γ̂k, α̂k, θ0)}

=
1

nk

∑
i∈Ik

{m(Wi, γ̂k) + ϕ(Wi, γ̂k, α̂k)−m(Wi, γ
⋆
0)− ϕ(Wi, γ

⋆
0 , α

⋆
0)} = R̂1 + R̂2,

where

R̂1 =
1

nk

∑
i∈Ik

[m(Wi, γ̂k − γ⋆0)− m̄(γ̂k − γ⋆0)] (S.10)

+
1

nk

∑
i∈Ik

[ϕ(Wi, γ̂k, α
⋆
0)− ϕ(Wi, γ

⋆
0 , α

⋆
0)− ϕ̄(γ̂k, α⋆

0)]

+
1

nk

∑
i∈Ik

[ϕ(Wi, γ
⋆
0 , α̂k)− ϕ(Wi, γ

⋆
0 , α

⋆
0)− ϕ̄(γ⋆0 , α̂k)],

R̂2 =
1

nk

∑
i∈Ik

[ϕ(Wi, γ̂k, α̂k)− ϕ(Wi, γ̂k, α
⋆
0)− ϕ(Wi, γ

⋆
0 , α̂k) + ϕ(Wi, γ

⋆
0 , α

⋆
0)]

= − 1

nk

∑
i∈Ik

[α̂k(Xi)− α⋆
0(Xi)][γ̂k(Xi)− γ⋆0 (Xi)]. (S.11)

Define ∆̂ik = m(Wi, γ̂k− γ⋆0 )− m̄(γ̂k− γ⋆0) for i ∈ Ik and let Wc
k denote the observations

Wi for i /∈ Ik. Note that γ̂k depends only onWc
k by construction. Then by independence of
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Wc
k and {Wi, i ∈ Ik} we have E[∆̂ik|Wc

k] = 0. Also by independence of the observations,

E[∆̂ik∆̂jk|Wc
k] = 0 for i, j ∈ Ik. Furthermore, for i ∈ Ik E[∆̂2

ik|Wc
k] ≤

∫
[m(w, γ̂k −

γ⋆0)]
2F0(dw). Then by equation (5.20) we have

E

( 1

nk

∑
i∈Ik

∆̂ik

)2

|Wc
k

 =
1

n2k
E

[(∑
i∈Ik

∆̂ik

)
|Wc

k

]
=

1

n2k

∑
i∈Ik

E[∆̂2
ik|Wc

k]

≤ 1

nk

∫
[m(w, γ̂k − γ⋆0)]2F0(dw) = op(σ

2/nk) = op(σ
2/n).

The conditional Markov inequality then implies that
∑

i∈Ik
∆̂ik/n = op(σ/

√
n). The

analogous results also hold for ∆̂ik = ϕ(W, γ̂k, α
⋆
0)− ϕ(W,γ⋆0 , α⋆

0)− ϕ̄(γ̂k, α⋆
0) and ∆̂ik =

ϕ(W,γ⋆0 , α̂k)−ϕ(W,γ⋆0 , α⋆
0)− ϕ̄(γ⋆0 , α̂k) by ϕ̄(γ

⋆
0 , α

⋆
0) = 0. Summing across the three terms

in R̂1 gives R̂1 = op(σ/
√
n).

Next let ∆̂k(x) = −[α̂k(x)− α⋆
0(x)][γ̂k(x)− γ⋆0 (x)]. Then by the triangle and Cauchy-

Schwartz inequalities,

E[|R2| |Wc
k] ≤

∫ ∣∣∣∆̂k(x)
∣∣∣F (dx) ≤ ∥α̂k − α⋆

0∥P,2 ∥γ̂k − γ
⋆
0∥P,2 = σσ−1 ∥α̂k − α⋆

0∥P,2 ∥γ̂k − γ
⋆
0∥P,2

≤ σσ−1(∥α̂k − α0∥P,2 + ∥α0 − α⋆
0∥P,2) ∥γ̂k − γ

⋆
0∥P,2 .

By hypothesis r⋆2r
⋆
1 = o (1/

√
n) , so that by the conditional Markov inequality and the

definition of r⋆2 ,

R̂2 = Op(σr
⋆
2r

⋆
1) = op(σ/

√
n).

The conclusion then follows by the triangle inequality. 2

S8. PROOFS FOR SECTION S3

S8.1. Proof of Lemma 3.1

Use the same notation as in the proof of the previous lemma. In all examples, α0 ∈ L2(F )
and γ ∈ L2(F ) imply that |⟨α0, γ⟩| < ∥α0∥P,2∥γ∥P,2 <∞.

Proof of claim (i). In Example 2.1, since dF (x) =
∑1

k=0 P [D = k|Z = z]1(k = d)dF (z)
by the Bayes rule, we have

⟨α0, γ⟩ =
∫
γ(d, z)ℓ(x)

1(d = 1)− 1(d = 0)

P [D = d|Z = z]
dF (x) = θ(γ).

In Example 2.2, ℓα0 ∈ L2(F ) means that the Radon–Nykodym derivatives dF1

dF and dF0

dF
exist on the support of ℓ, so that

⟨α0, γ⟩ =
∫
γℓ

(
dF1

dF
− dF0

dF

)
dF =

∫
γℓ(dF1 − dF0) = θ(γ).

We can demonstrate the claim for Example 2.3 similarly to Example 2.2.
In Example 2.4, we can write

⟨α0, γ⟩ = −
∫ ∫

γ(x)
divd(ℓ(x)t(x)f(d|z))

f(d|z)
f(d|z)dddF (z)

=

∫ ∫
∂dγ(x)

′t(x)ℓ(x)f(d|z)dddF (z) = θ(γ),
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where we used the integration by parts and that γ(x)ℓ(x)t(x)f(d|z) vanishes on the
boundary of Dz. The rest of the claim is immediate from Lemma 2.1.
Proof of claim (ii). We can refer to the case of linear regression discussed in Section 2.3.
In what follows consider the case of G > 0 and ℓ = 1.
In Example 2.1, M = E(b(1, Z) − b(0, Z)). Suppose P [D = 0|Z] ∈ {0, 1} with proba-

bility in [π, 1 − π] for π > 0, but such that G > 0 (this puts restrictions on b). This is
known as the case of failing overlap assumption in causal inference. Then α0(X) is na
with probability π.
In Example 2.2 and 2.3,M =

∫
b(dF1−dF0) is well defined, but α0(X) = na whenever

dF1/dF and dF1/dF do not exist. For instance, F1 and F0 can have point masses, where
F does not, while retaining the same support as F .
In Example 2.4, take basis functions b and a constant direction t(X) = 1, such that

M = E∂db(D,Z) is well defined. Consider the case where f(d|Z) = 0 with positive
probability so that α0(X) = na with this probability. 2

S8.2. Proof of Lemma 3.2

The projection operator onto Γ̄1 = L2(F1) is the conditional expectation with condition-
ing on X1. The contractive property follows from Jensen’s inequality. 2

S8.3. Proof of Lemma 3.3

The proof uses the fact that m(W,γ) = m(X, γ), and that

ψ⋆(X)0(W ) = −U1 − α⋆
0(X)U2.

Since EU1U2α
⋆
0(X) = 0 by the LIE, using the bounded moments assumption we have:

σ2 = EU2
1 + EU2

2α
⋆2
0 ≥ E[E(U2

2 | X)α⋆2
0 (X)] ≥ c2L2.

The bound from above follows similarly:

σ2 = EU2
1 + EU2

2α
⋆2
0 ≤ c̄2 + E[E(U2

2 | X)α⋆2
0 (X)] ≤ c̄2 + c̄2L2.

Using the triangle inequality and bounded moments assumptions, we have:

κ ≤ ∥U1∥P,3 + ∥U2α
⋆
0∥P,3 ≤ c̄+ (E(E[|U2|3 | X]|α⋆

0(X)|3))1/3,
≤ c̄+ c̄∥α⋆

0∥P,3 ≤ c̄(1 + c(L2 ∨ 1)),

where the last line follows by assumption. 2

S8.4. Proof of Lemma 3.4

We shall use that m(W,γ) = m(X, γ), and

ψ⋆
0(W ) = −U1 − α⋆

0(X)U2.

Then by EU1U2α
⋆
0(X) = 0, holding by the LIE, we have

σ2 = EU2
1 + EU2

2α
⋆2
0 = EU2

1 + E(E[U2
2 | X]α⋆2

0 (X)).

Then using the moment assumptions, we have

c2∥α⋆
0∥2P,2 ≤ σ2 ≤ c̄2(∥ℓ∥2P,2 + ∥α⋆

0∥2P,2).
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Using the triangle inequality, the LIE, and the bounded heteroscedasticity assumption,
conclude

κ ≤ ∥U1∥P,3 + ∥U2α
⋆
0∥P,3 ≤ c̄(∥ℓ∥P,3 + ∥α⋆

0∥P,3).

For the case (a), α⋆
0(X) = α0(X; 1)ℓ(X), using the assumed bound α ≤ α0(X; 1) ≤ ᾱ

conclude that

α∥ℓ∥P,2 ≤ L = ∥α⋆
0∥P,2 ≤ ᾱ∥ℓ∥P,2, ∥α⋆

0∥P,3 ≤ ᾱ∥ℓ∥P,3.

For the case (b), α⋆
0(X1) = E[α0(X; 1) | X1]ℓ(X1), so that by Jensen’s inequality

∥α⋆
0∥P,q ≤ ∥α0(X; 1)ℓ(X1)∥P,q ≤ ᾱ∥ℓ∥P,q

and using

α ≤ E[α0(X; 1) | X1],

holding because conditional expectation preserves order, conclude that

∥α⋆
0∥2P,2 = E(E[α0(X; 1) | X1]

2ℓ(X1)
2) ≥ α2∥ℓ∥2P,2.

Further, by change of variables in Rp1 : u = (d0 − d)/h, so that du = h−p1dd, we have
that

∥ℓ∥qP,qω
q =

∫
Rp1

h−p1q|Kq((d0 − d)/h)|fD(d)dd =

∫
Rp1

h−p1(q−1)|Kq(u)|fD(d0 − uh)du

so that

h−p1(q−1)/qf1/q
(∫
|K|q

)1/q

≤ ∥ℓ∥P,qω ≤ h−p1(q−1)/q f̄1/q
(∫
|K|q

)1/q

.

Further, we have that

ω =

∫
h−p1K((d0 − d)/h)fD(d)dd =

∫
K(u)fD(d0 − uh)du.

Using the Taylor expansion in h around h = 0 and the Holder inequality:

|ω − fD(d0)| =
∣∣∣∣∫ K(u)h∂fD(d0 − uh̃)′udu

∣∣∣∣ ≤ hf̄ ′ ∫ ∥u∥∞|K(u)|du,

for some 0 ≤ h̃ ≤ h. Hence for all h < h1 < h0, with h1 depending only on (K, f̄ ′, f , f̄):

f/2 ≤ ω ≤ 2f̄ .

In summary, we have the following non-asymptotic bounds for all 0 < h < h1:

cα∥ℓ∥P,2 ≤ σ ≤ c̄
√
1 + ᾱ∥ℓ∥P,2, α∥ℓ∥P,2 ≤ L ≤ ᾱ∥ℓ∥P,2, κ ≤ c̄(1 + ᾱ)∥ℓ∥P,3,

where

h−p1(q−1)/qf1/q
(∫
|K|q

)1/q

/(2f̄) ≤ ∥ℓ∥P,q ≤ h−p1(q−1)/q f̄1/q
(∫
|K|q

)1/q

2/f.

As h→ 0, we have that

σ ≍ L ≍ ∥ℓ∥P,2 ≍ h−p1/2, κ ≲ h−2p1/3, κ/σ ≲ h−p1/6.

2
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S8.5. Proof of Lemma 3.5

Similarly to the proof of Lemma 3.4, using the LIE and bounded heteroscedasticity, we
obtain

∥α⋆
0∥2P,2c

2 ≤ σ2 ≤ ∥ℓ∥2P,2c̄
2 + ∥α⋆

0∥2P,2c̄
2,

and by the triangle inequality

κ ≤ ∥ℓ∥P,3c̄+ ∥α⋆
0∥P,3c̄.

It remains to bound ∥α⋆
0∥P,q. To help this, introduce notation

v(X) := f(D | Z).

Case (a). We have that

α⋆
0 = α0 = divd(ℓ)t+ divd(t)ℓ+ divd(v)ℓt/v.

By the triangle inequality,

∥α⋆
0∥P,q ≤ ∥divd(ℓ)t∥P,q + ∥divd(t)ℓ∥P,q + ∥divd(v)ℓt/v∥P,q,

∥α⋆
0∥P,2 ≥ ∥divd(ℓ)t∥P,2 − ∥divd(t)ℓ∥P,2 − ∥divd(v)ℓt/v∥P,2.

Using the bounds assumed in the Lemma, we have

∥divd(ℓ)t∥P,q ≤ ∥divd(ℓ)∥P,q t̄; ∥divd(t)ℓ∥P,q ≤ t̄′∥ℓ∥P,q; ∥divd(v)ℓt/v∥P,q ≤ ∥ℓ∥P,q(f̄
′t̄/f).

By the proof of Lemma 3.4, for all h < h1 < h0, with h1 depending only on (K, f̄ ′, f , f̄):

f/2 ≤ ω ≤ 2f̄ ,

and

h−p1(q−1)/qf1/q
(∫
|K|q

)1/q

/(2f̄) ≤ ∥ℓ∥P,q ≤ h−p1(q−1)/q f̄1/q
(∫
|K|q

)1/q

2/f.

Furthermore, by the LIE and the assumed lower bounds in the statement:

∥divd(ℓ)t∥2P,2 = E[div(ℓ)2E(t2|D)]

= ω−2h−2h−p12

∫
(divK((d0 − d)/h)2E(t2|D = d)f(d)dd

= ω−2h−2h−p1

∫
(divK(u))2E(t2|D = d0 − hu)f(d0 − hu)du

≥ (2f̄)−2h−2h−p1t2f

∫
(divK)2,

and similarly

∥divd(ℓ)∥qP,q ≤ ω
−qh−qh−p1(q−1)f̄

∫
|divK|q ≤ (f/2)−qh−qh−p1(q−1)f̄

∫
|divK|q

Case (b). Here we have, using the notation as above

α⋆
0(X1) = E[α0 | X1] = divd(ℓ(X1))E[t(X1) | X1]

+ E[divd(t(X) | X1]ℓ(X1) + E[divd(v(X))t(X)/v(X) | X1]ℓ(X1).

Then by contractive property of the conditional expectation ∥α⋆
0∥P,q ≤ ∥α0∥P,q, so the

upper bounds apply from case (a).
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We only need to establish lower bound on ∥α⋆
0∥P,2. By the triangle inequality,

∥α⋆∥P,2 ≥ ∥divd(ℓ)E[t | X1]∥P,2 − ∥E[divd(t) | X1]ℓ∥P,2 − ∥E[divd(t) | X1]ℓ∥P,2.

By Jensen’s inequality, and using the same calculations as in case (a):

∥divd(ℓ(X1))E[t(X1) | X1]∥P,2 ≤ ∥divd(ℓ(X1))t(X1)∥P,2 ≤ t̄∥divd(ℓ)∥P,q;

∥E[divd(t) | X1]ℓ∥P,2 ≤ ∥divd(t)ℓ∥P,q ≤ t̄′∥ℓ∥P,q;

∥E[divd(v)t/v | X1]ℓ∥P,2 ≤ ∥divd(v)ℓt/v∥P,q ≤ ∥ℓ∥P,q(f̄
′t̄/f).

And, similarly to the calculation above

∥divd(ℓ)E[t | X1]∥2P,2 = E[divd(ℓ)
2E((E[t | X1])

2|D)]

= ω−2h−2h−p12

∫
(divK((d0 − d)/h)2E((E[t | X1])

2|D = d)f(d)dd

= ω−2h−2h−p1

∫
(divK(u)2E((E[t | X1])

2|D = d0 − hu)f(d0 − hu)du

≥ ω−2h−2h−p1t2f

∫
(divK)2

≥ (2f̄)−2h−2h−p1t2f

∫
(divK)2,

using the assumed bound E((E[t | X1])
2|D = d) ≥ t2 for d ∈ Nh(d0).

In either case (a) or (b), we now summarize the bounds asymptotically by letting
h↘ 0:

L ≲ σ ≲ h−p1/2(1 + h−1), h−p1/2(h−1 − 1) ≲ L ≲ h−p1/2(h−1 + 1),

κ ≲ h−2p1/3(h−1 + 1), κ/σ ≲ h−p1/6.

2

S8.6. Proof of Lemma 3.6

Introduce m(d) := E[m(W,γ⋆0 ) | D = d] and note

ϑ1(h) =

∫
m(d)h−p1K((d0 − d)/h)fD(d)dd =

∫
m(d0 − hu)K(u)fD(d0 − hu)du,

ϑ2(h) =

∫
h−p1K((d0 − d)/h)fD(d)dd =

∫
K(u)fD(d0 − uh)du.

Note that by
∫
K = 1,

ϑ1(0) = m(d0)fD(d0), ϑ2(0) = fD(d0).

Hence

θ(γ⋆0 ; ℓh) =
ϑ1(h)

ϑ2(h)
, θ(γ⋆0 ; ℓ0) :=

ϑ1(0)

ϑ2(0)
= m(d0).

By the standard argument to control the bias of the higher-order kernel smoothers, e.g.
by Lemma B2 in Newey (1994b), which employs the Taylor expansion of order v in h
around h = 0, for some constants Av that depend only on v:

|ϑ1(h)− ϑ1(0)| ≤ Avh
vḡv

∫
∥u∥v|K(u)|du,
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|ϑ2(h)− ϑ2(0)| ≤ Avh
vf̄v

∫
∥u∥v|K(u)|du,

where v = o ∧ sm. Then using the relation

ϑ1(h)

ϑ2(h)
− ϑ1(0)

ϑ2(0)
=

(
ϑ−1
2 (0)(ϑ1(h)− ϑ1(0)) + ϑ1(0)(ϑ

−1
2 (h)− ϑ−1

2 (0))
+(ϑ1(h)− ϑ1(0))(ϑ−1

2 (h)− ϑ−1
2 (0))

)
,

we deduce the following bound that applies for all h < h1 ≤ h0,

|θ(γ⋆0 ; ℓh)− θ(γ⋆0 ; ℓ0)| ≤
∣∣∣∣ϑ1(h)ϑ2(h)

− ϑ1(0)

ϑ2(0)

∣∣∣∣ ≤ Chv,
where the constant C and h1 depend only on K, v, ḡv, f̄v, f . 2
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