Promoting high-density lipoprotein function via intravenous infusion: the rebirth of apoA-I Milano?

Antonio J. Vallejo-Vaz and Kausik K. Ray*

Department of Primary Care and Public Health, Imperial Centre for Cardiovascular Disease Prevention, School of Public Health, Imperial College London, Reynolds building, St Dunstan’s road, W6 8RP, London, UK

Online publish-ahead-of-print 11 December 2015

This editorial refers to ‘A single infusion of MDCO-216 (ApoA-I Milano/POPC) increases ABCA1-mediated cholesterol efflux and pre-beta 1 HDL in healthy volunteers and patients with stable coronary artery disease’, by D.G. Kallend et al., on page 23.

Apolipoprotein A-I (apoA-I) is the major protein component of the high-density lipoprotein (HDL) particles. Higher levels of apoA-I have been associated with a decreased cardiovascular risk even among subjects with reduced low-density lipoprotein cholesterol (LDL-C) levels; but, unlike HDL-C, an increase in apoA-I levels in individuals treated with statins has been associated with a lower risk of major cardiovascular events. These and other data have encouraged investigations of apoA-I mimetic compounds or reconstituted HDL particles as a potential therapeutic strategy. ApoA-I Milano (apoA-IM) is a natural variant of human apoA-I identified in individuals in northern Italy, which results from the replacement of arginine by cysteine at position 173 of the apoA-I amino acid sequence; this variation introduces structural changes in apoA-I, allows the formation of apoA-I homodimers (A-IM/A-IM) and heterodimers with apoA-II, and alters the apoA-I properties, which ultimately may affect HDL function. The carriers of this variant usually exhibit a lipid phenotype consistent of low HDL-C, low apoA-I, and moderate hypertriglyceridemia; however, despite a lipid profile that may be considered to be pro-atherogenic, apoA-IM seems to confer the carriers protection against the development of atherosclerosis and cardiovascular disease (CVD).

These observations have been supported by studies in animals, where the intravenous administration of recombinant apoA-IM has been associated with an improvement of endothelial dysfunction, reduction of vascular lesions, prevention of atherosclerosis progression, plaque regression and stabilization and antithrombotic effects, among others. In humans, a randomized controlled trial in patients with acute coronary syndrome (ACS) found a significant regression of coronary atherosclerosis after treatment with intravenous infusions of apoA-IM/phospholipid complex (ETC-216, 5 once-weekly infusions), as measured by intravascular ultrasound. In animals, the intramural administration of the same compound (ETC-216) in coronary arteries before stent placement (injury-induced luminal narrowing) significantly inhibited in-stent stenosis through reduction of intimal hyperplasia.

Interestingly, apoA-IM has been associated with an increased capacity of HDL particles to act as extracellular acceptors of cholesterol efflux from cells, which represents one of the first steps in the reverse cholesterol transport. In this way, apoA-IM may enhance the removal of excess cholesterol from the arterial wall and this may explain, at least partly, the protective effect of apoA-IM. Early studies found that cholesterol efflux to sera from apoA-IM carriers was as efficient as sera from control subjects (despite the large reduction of apoA-I and HDL levels in the former), thus suggesting a higher relative apoA-I efflux potential in those carrying the apoA-IM variant. Calabresi et al. further showed that small A-IM/A-IM reconstituted HDL particles were more efficient than the corresponding apoA-I particles as acceptors of membrane cholesterol. Similarly, a single intravenous high-dose of recombinant apoA-IM in high cholesterol-fed apoE-deficient mice rapidly induced a nearly twofold increase in cholesterol efflux capacity (CEC) compared with controls. And Cimmino et al. described a decrease in cholesterol content associated with an up-regulation of the arterial wall transporters ABCA1 and SR-RI in aortas from rabbits treated with recombinant apoA-IM.

In the present issue, Kallend et al. report the results of a phase I randomized trial using a single 2-h infusion of highly purified apoA-IM (MDCO-216, apoA-IM/POPC) vs. placebo in 24 healthy volunteers (mean age 26 years, n = 10 males) and 24 stable coronary artery disease (CAD) patients (mean age 62 years, n = 23 males). The administration of MDCO-216 rapidly increased apoA-I levels in a dose-dependent manner and was followed by a change in the lipid profile resembling that previously described in apoA-IM carriers: a decrease in HDL-C and endogenous apoA-I (both more pronounced at higher doses and in CAD patients) and a dose-dependent increase in triglycerides. Additionally, LDL-C decreased...
in CAD patients with the higher doses, and apoB increased and apoE decreased in both healthy volunteers and CAD patients. Importantly, the markers of HDL function were enhanced with MDCO-216; in agreement with the previous findings, MDCO-216 significantly (up to fourfold with the highest doses) the ABCA1-mediated CEC in a dose-dependent manner in both groups; this increase was independent of the baseline values, was maximal at the end of the infusion, and decreased over time to reach baseline levels at day 7. SR-BI-mediated CEC also increased dose-dependently but modestly, and returned to baseline 24 h after the infusion. ABCG1-mediated CEC slightly increased without a clear dose-dependency. Finally, preB1-HDL (lipid-poor very small HDL particles, acceptors of cholesterol effluxed by ABCA1) significantly increased in a dose-dependent manner and returned to baseline levels at 24 h. MDCO-216 was well tolerated and considered safe.

These results support (i) the enhancement of cholesterol efflux and cholesterol reverse transport as the mechanisms by which apoA-IM may exert its protective effect, (ii) the importance of HDL function rather than HDL-C levels, and (iii) the potential role of apoA-IM as a therapeutic strategy to reduce cardiovascular risk.

Whilst CEC has been inversely associated with the incidence of cardiovascular events in population-based studies, it is still uncertain whether pharmacologically mediated increases can be translated into a reduction in cardiovascular risk. In fact, therapy with another class of compound which inhibits cholesteryl ester transfer protein (CETPi) have all led to significant increases in CEC (together with significant increases in apparently functional HDL levels); however, this has not resulted in a reduction of cardiovascular events. In ILLUMINATE trial, with most participants having CVD, torcetrapib was associated with an increased morbi-mortality; the data OUTCOMES trial in patients with ACS was stopped for clinical reasons. In ACCelerate trial with evacetrapib for high-risk atherosclerotic CVD has been discontinued due to insufficient efficacy. Whether increases in cholesterol efflux mediated mostly by ABCA1 after the administration of apoA-IM might exhibit different cardiovascular effects rather than the increased CEC resulting from CETPi (mostly mediated via non-ABCA1) is unknown.

The results reported by Kallend et al. are preliminary but promising and should encourage further confirmation in larger randomized trials assessing the effects of MDCO-216 on atherosclerosis and cardiovascular outcomes. Its intravenous administration and the duration of the effects suggest that it might be more suitable for patients with acute or unstable CVD (rather than giving repeated infusions over time in subjects who are otherwise stable).

Conflicts of interest: K.K.R. received honoraria from Roche, Lilly, and Cerenis for serving on the executive steering committee of trials assessing CETP inhibition and for attending advisory boards and giving lectures.

References