Is increased perfusion pressure really necessary during cardiopulmonary bypass?

Cem H. Alhan*, Fevzi Toramanb and Hasan Karabulutc

* Department of Cardiovascular Surgery, School of Medicine, Acibadem University, Istanbul, Turkey
b Department of Anesthesiology, School of Medicine, Acibadem University, Istanbul, Turkey
c Corresponding author: Acibadem Maslak Hospital, Buyukdere Cad. 40, Maslak, Istanbul, Turkey. Tel: +90-216-3044895; fax: +90-216-6124412; e-mail: calhan@gmail.com (C.H. Alhan).

Received 18 July 2011; accepted 16 September 2011

Keywords: Cardiopulmonary bypass • Delirium • Coronary artery bypass grafting • Cognitive dysfunction

We read with great interest the work by Siepe et al. [1] investigating the effect of increased systemic perfusion pressure during cardiopulmonary bypass on cognitive dysfunction and delirium. In this revolutionary study questioning cerebral autoregulation, they found that maintaining mean perfusion pressure during normothermic cardiopulmonary bypass (CPB) at 80–90 mmHg is associated with less early cognitive dysfunction and delirium after coronary artery bypass grafting (CABG), and elevated perfusion pressure is not associated with increased morbidity and mortality. This finding may lead to severe changes in the routine practice of cardiac surgeons and anaesthesiologists including us. However, we believe that there are some issues that need to be addressed.

This study lacks a power and sample analysis and seems to have been conducted in a very small group of patients. For this reason, postoperative complications such as atrial fibrillation (19 vs 36%), bleeding requiring reoperation (2 vs 7%), use of blood products (50 vs 70%), cessation of catecholamine support (26 vs 14 h), superficial wound infection (4 vs 7%) and pleural effusion (33 vs 48%) which may be statistically significant in a larger group of patients appears to be insignificant.

As the low perfusion group needed longer catecholamine support, it is easy to assume that they were in either low cardiac output (LCO) or vasoplegic state. The incidence of postoperative left ventricular dysfunction, which is a predictor of LCO, is not reported and should be included in the statistical analysis. Furthermore, it is well known that postoperative medication by inhibitors of angiotensin-converting enzyme in coronary artery patients is associated with vasoplegic shock early after CABG. This issue also needs to be addressed.

If low perfusion pressure during CPB is to be blamed, then the postoperative period should be comparable in both groups. However, as the LP group suffered from LCO postoperatively, the time of Mini-Mental-State examination. All of these factors have been shown to be associated with postoperative delirium [2, 3].

Cerebral circulation during CPB may be affected by partial arterial oxygen (hyperoxaemia by impairing red cell rheology and microcirculation) and carbon dioxide pressure (by changing cerebral arteriolar reactivity) [4]. Thus, they should be monitored closely (more frequently than every 20 min) and kept similar in both groups.

Spot measurements of transcutaneous cerebral oxygen saturation as measured by near-infrared spectroscopy seem to be similar in both groups. However, it is reported that rSO2 desaturation score, which is calculated by multiplying rSO2 below 50% by time (s), is a more sensitive method of predicting early postoperative cognitive decline than spot measurements [5].

Nitric oxide (NO) formed via endothelial NO synthase and neuronal NO synthase plays crucial roles in the regulation of blood flow through vasodilatation and decreased vascular resistance. Endothelial and autonomic nitrenergic neuron functions are impaired in patients with diabetes mellitus, resulting in regional blood flow decrease [6]. As the duration of the diabetes mellitus and insulin dependence may change from patient to patient, it seems necessary to exclude these patients or at least compensate for the severity of their disease.

REFERENCES

LETTER TO THE EDITOR RESPONSE

Reply to Alhan et al.

Matthias Siepe*

Department for Cardiovascular Surgery, University Hospital Freiburg, Freiburg, Germany

* Corresponding author. Department for Cardiovascular Surgery, University Hospital Freiburg, Hugstetter Str. 55, D-79106 Freiburg, Germany.
Tel: +49-761-2702818; fax: +49-761-2702550; e-mail: matthias.siepe@web.de (M. Siepe).

Received 1 September 2011; accepted 16 September 2011

Keywords: Cardiopulmonary bypass • Perfusion pressure • Postoperative cognitive dysfunction

We thank Dr. Alhan et al. for their constructive and important comment on our study [1]. They highlighted some relevant limitations [2] of this small randomized trial which we aim to address in our response in part. Alhan et al. have correctly asked for some unreported preoperative factors such as the ejection fraction, the pre-OP medication, including angiotensin-converting enzyme inhibitors, and the longevity of diabetes which are reported factors associated with postoperative cognitive dysfunction. We intended to exclude the possible bias by means of the study’s randomized fashion and analysed these factors. The medication, the preoperative ventricular function and EuroSCORE were identical in the two groups. The most important limitation of this trial (as correctly stated by Alhan et al.) is the small size of the cohorts. More important questions with better defined secondary endpoints can only be answered in a bigger randomized multicentre trial. Factors such as the mentioned neurochemical markers, more meaningful values derived from transcutaneous oxygen saturation must be included in a future trial as well as the intermediate and possibly late cognitive outcome measures. We hope that Alhan et al. and other readers will like to participate in the planning and conduction of such a trial. This type of input is crucial to derive more valid knowledge about the association between pressure, microperfusion and postoperative cognitive dysfunction in surgery with the use of cardiopulmonary bypass.

REFERENCES


LETTER TO THE EDITOR

Reviewing α-Gal in valve immunology

Andreas Mangolda and Hendrik Jan Ankersmitb,*

a Department of Cardiology, Medical University of Vienna, Vienna, Austria
b Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria

* Corresponding author. Department of Thoracic Surgery, Christian Doppler Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria. Tel: +43-1-40400-6979; fax: +43-1-40400-6977; e-mail: hendrik.ankersmit@meduniwien.ac.at (H.J. Ankersmit).

Received 23 August 2011; accepted 25 October 2011

Keywords: α-Gal • Gal knockout • Antibodies • Bioprostheses • Heart valve