Introduction

The main objectives of secondary bone grafting are: to fill the residual osseous cleft of the alveolus and anterior palate (Boyne and Sands, 1972); to give support to the alar base (Carlton Schultz, 1989; Jackson et al., 1982); to eliminate oro-nasal fistula (Boyne and Sands, 1976; Eldeeb et al., 1986) and mucosal recesses (Bergland et al., 1986); to enhance maxillary stability, especially in bilateral clefts with mobile premaxillae (Åbyholm et al., 1981) and to consolidate the maxilla to facilitate secondary surgery (Amanat and Langdon, 1991); to obtain functional bony tissue in the donor site into which teeth, in particular the upper canine, could erupt spontaneously and, hence, to facilitate the achievement of a non-prosthetic result (Bergland et al., 1986); to give bony support to the adjacent dentition (Kortebein et al., 1991); to facilitate final prosthetic restoration by improving vestibular soft-tissue relations (Åbyholm et al., 1981), alveolar height and contour (Kortebein et al., 1991); to provide bone for subsequent placement of osseo-integrated implants (Verdi et al., 1991) and autologous transplants (Hillerup et al., 1987) and to improve dental and facial aesthetics.

There remain few advocates of primary bone grafting (Rosenstein et al., 1991). Secondary bone grafts are more popular and can be placed at three stages: at 2–5 years, at the optimal time of 6–15 years or late secondary bone grafting after this time (Boyne and Sands, 1972). As sagittal and transverse growth has virtually ceased by 8–9 years (Bergland et al., 1986), the chances of interfering with maxillary growth are minimal after this age. However, vertical growth continues until adolescence and is affected by secondary bone grafting (Enemark et al., 1987). Extensive mobility of the palatal mucosa during surgery may result in reduced vertical development of the maxilla (Enemark et al., 1985, 1987).

Cancellous bone grafts are favoured over cortical bone due to the abundance of osteogenic surface cells, many of which survive and initiate new bone formation (Åbyholm et al., 1981). Allogenic bone (Maxson et al., 1990) and hydroxylapatite (Eppley et al., 1986) have also been grafted. The iliac crest is the most popular site for obtaining the graft material because of its abundance of cancellous bone which transforms rapidly into alveolar bone (Bergland et al., 1986).
Cancellous bone has also been procured from the calvarium (Sandove et al., 1990), the mandible (Sindet-Pedersen and Enemark, 1988) and the tibia (Lilja et al., 1987).

Subjects and methods

This study was undertaken to assess the outcome of bone grafts performed at Great Ormond Street between January 1982 and January 1989. During this time, 115 patients, 63 male and 52 female, were operated on. The racial distribution included 106 Caucasians, seven Asians, one Afro-Caribbean, and one Oriental. Eighty-seven patients had unilateral (58 left and 29 right) and 28 bilateral clefts. The total number of cleft sites was thus 143. The mean age at the time of operation was 11.59 years, with a range of 8.08–18.75 years.

In accordance with the guidelines laid down by Åbyholm et al. (1981), orthodontic expansion was carried out in the majority of cases prior to grafting cancellous bone from the iliac crest into the alveolar cleft. Anterior occlusal radiographs (through the midline and the cleft) were routinely taken pre- and post-operatively. Post-operative radiographs were taken at 6 weeks, and then at 3, 6, 9, and 12 months. Additional radiographs were taken at infrequent intervals.

The results of this study were based on the anterior occlusal radiographs in 67 patients (58 per cent), anterior occlusals and periapicals in 42 patients (36 per cent) and an orthopantomogram in one patient (0.8 per cent). The radiographs were missing in five patients (4.3 per cent). The assessment was carried out at a mean of 4.5 years post-surgery with a range of 1–9 years. The height of the interalveolar septum was recorded according to the criteria of Bergland et al. (1986):

- **Type I** septum height approximately normal.
- **Type II** septum height at least three-quarters of normal.
- **Type III** septum height less than three-quarters of normal.
- **Type IV** absence of a continuous bony bridge across the cleft.

The position of the cleft canine was also recorded both pre- and post-bone grafting.

Results

As radiographs were missing in five patients, one of whom had a bilateral cleft, the results are based on 137 cleft sites.

The eruption of the cleft canine

The upper canine was unerupted in 58.4 per cent (80) and erupted in 41.5 per cent (57) of sites prior to bone grafting. Post-bone grafting, the upper canine had erupted in 96.35 per cent (132) and remained unerupted in 3.65 per cent (five) of clefts.

The interalveolar septal height

The results were as follows:

- **Type I** 45.99 per cent (63) of clefts.
- **Type II** 40.88 per cent (56) of clefts.
- **Type III** 10.95 per cent (15) of clefts.
- **Type IV** 2.18 per cent (3) of clefts.

Type I and II are clinically acceptable. Thus, 86.86 per cent of bone grafts were successful. The Type III group was composed of 11 patients including six male, five female, nine Caucasians, and two Asians. Of the clefts, five were unilateral (four left and one right) and six bilateral (involving both sides in four cases, and one side in two cases). The cleft canine was unerupted in five sites and had erupted in 10 sites prior to surgery. The cleft canine had erupted post-operatively in all cases. The mean age at the time of operation was 11.7 years and the mean time of assessment was 5.8 years post-surgery. Two clefts were operated on in 1983, six in 1984, three in 1985, two in 1986, and two in 1987. The Type IV group comprised three Caucasians, two male, and one female. The clefts were unilateral and on the left side. The cleft canine was unerupted in two cases and erupted in one case prior to bone grafting. The canine had erupted in all cases post-surgery. The mean age at the time of the operation was 12.6 years. Two of the operations were performed in 1983 and one in 1986.
Dental resorption

Five (3.6 per cent) sites showed cervical resorption affecting the adjacent incisor and 2 (1.4 per cent) showed internal resorption of the cleft canine.

Discussion

Bone height

Figure 1 shows an anterior occlusal radiograph taken through the cleft site. It highlights the absence of bone prior to bone grafting. Figure 2 is a post-bone grafting anterior occlusal radiograph of the same patient showing a successful bone graft with the erupted cleft canine. This case is illustrated clinically in Figures 3, 4, and 5. Figure 3 is an occlusal view of the cleft palate and Figure 4 a view of the buccal occlusion on the cleft side prior to treatment. Figure 5 shows the buccal occlusion on the cleft side after bone grafting and orthodontic treatment. The interalveolar septal height was used to assess the success of the bone graft. Although the results were evaluated between 1–9 years post-surgery, the bone height level appeared to be stable after 6 months, with a clinical success rate of 86.86 per cent. This compares favourably with the 90 per cent success rate of Bergland et al. (1986), the 83 per cent success rate of Amanat and Langdon (1991) and the 80 per cent success rate of Jackson et al. (1982). However 10.9 per cent were Type III and 2.1 per cent failed. Attempts were made to evaluate the reasons for failure.

Unilateral versus bilateral. Nine per cent of unilateral clefts were Type III or IV compared with 21.4 per cent of bilateral clefts. Hall and Posnick (1983) also found less favourable results in bilateral clefts and Åbyholm et al. (1981) attributed this to poor immobilization of the pre-maxilla in the post-operative phase.

The stage of development of the canine. Of the canines which had erupted prior to surgery, 19.3 per cent ended up with a Type III or IV bone graft. By contrast only 8.7 per cent of canines which were unerupted prior to surgery ended up in this group. This is in agreement with the work of Bergland et al. (1986) who found less favourable results if grafting was performed after canine eruption.

The age at the time of surgery. The mean age of patients with Type I and Type II bone grafts was
10.5 years. However, the mean age for those with Type III and Type IV grafts was 11.7 and 12.8 years, respectively. Åbyholm et al. (1981) also found a higher failure rate when the osteoplasty was performed late. Waite (1987) explained that younger patients maintain their bone levels more than older patients, as the longer the untreated cleft exists, the more the alveolar bone levels proximal to the cleft resorb. Thus, the final graft height is determined by pre-existing alveolar bone levels.

Experience. Although Åbyholm et al. (1981) found the failure rate was higher in earlier operations, no such relationship was found in this study.

Infection. Whilst the oral hygiene status was not routinely recorded, nevertheless, 83 per cent of Types III and IV had reports of poor oral hygiene. This is something that needs to be carefully evaluated in the future.

Other reasons for failure. Amanat and Langdon (1991) have discussed other reasons for failure. These include the extraction of teeth at the time of alveoloplasty and excess surgery, together with scarring in the area of the proposed graft.

Timing

Although the mean age was 11.5 years, the age gradually reduced each year from 13.33 years in 1982 to 10.1 years in 1988. Bone grafting after 7–8 years is unlikely to interfere significantly with maxillary growth (Åbyholm et al., 1981; Eldeeb, 1990). This is, therefore, the lower limit. There is no absolute upper limit and in this study one patient was successfully grafted at 18 years 9 months. However, the success rate is greatest in younger patients (Åbyholm et al., 1981). The dental age also needs to be considered. Bone grafting should be performed before the eruption of the cleft canine (Boyne and Sands, 1972) when the root is half to two-thirds formed (Kortebein et al., 1991). In this study however, timing was also dictated by the age at which the patient was referred.
Other complications

Cervical root resorption. The 3.6 per cent root resorption in this study compares favourably with other studies showing 3.3 per cent (Amanat and Langdon, 1991) and 5 per cent resorption (Bergland et al., 1986). Cervical root resorption starts below the epithelial attachment and is progressive (Amanat and Langdon, 1991). Damage to the root cementum during surgery is a likely causal factor, as root cementum is highly specialized and lacks the ability to regenerate completely after surgery (Bergland et al., 1986). Trauma to the periodontal ligament and drying of the root surface are similarly implicated (Amanat and Langdon, 1991). Osteoclastic activity of the cancellous marrow may also induce resorption, although this is reduced if cancellous bone from the jaw is placed against the root before iliac bone grafting (Amanat and Langdon, 1991).

Internal resorption. Two cases had internal resorption affecting the cleft canine which had erupted prior to bone grafting. Both occurred in males (a 14-year-old Asian and a 15-year-old Chinese) with unilateral clefts.

Retention of the cleft canine. Five canines were still unerupted at the time of the study. However, these patients were under 12 years of age and it is therefore likely that they will erupt.

Minor wound dehiscence. Although this study did not record dehiscence, it has been found in other studies, particularly in the presence of infection (Amanat and Langdon, 1991) and malpositioned central incisors (Hall and Posnick, 1983).

Proliferative granulation tissue. This occurred occasionally and was successfully treated by the topical application of silver nitrate.

Gait disturbance. Gait disturbance and lateral femoral cutaneous paraesthesia occurred occasionally, but was always transient.

Conclusions

This study assessed the success of 143 bone grafts. The interalveolar septal height was recorded using the criteria of Bergland et al. (1986). A clinically successful result was achieved in 86.8 per cent. Less than three-quarters normal bone height was found in 10.9 per cent and 2.1 per cent of bone grafts failed. The latter two categories were found more commonly in bilateral clefts, where the canine had erupted prior to surgery, and in the older age group. The canine had erupted through the graft in 94 per cent of cases. The remaining patients were less than 12 years of age and hence the outcome of the cleft canine is not yet known. The main complications found in this study were internal resorption of the cleft canine (1.4 per cent) and cervical root resorption (3.6 per cent) of the adjacent incisor.

Address for correspondence

Dr M. Mars
Dental Department
The Hospital for Sick Children
Great Ormond Street
London WC1N 3JH
UK

References

Eldeeb M 1990 Comment on a review paper on reconstruction of alveolar cleft with mandibular or iliac crest bone grafting. Journal of Oral and Maxillofacial Surgery 48: 559–560