Introduction

In recent years the aesthetics of the orthodontic appliance has become a topic of great interest with increasing numbers of adults receiving orthodontic treatment (Britton et al., 1990).

The first step towards a more aesthetic orthodontic appliance was the introduction in 1965 of acid etching and the Bowen type resins which led to the substitution of metal bands by directly cemented brackets (Newman, 1965). Transparent or coloured brackets made of plastic (polycarbonate, a polymer) came into use at the beginning of the 1970s. These plastic brackets presented various problems which still remain unsolved, namely staining and colour changes due to their high capacity for absorbing water; the necessity of using compatible resins, intermediary conditioners or ‘primers’ for adhesion; poor dimensional stability resulting in inadequate archwire/slot control; and the high coefficient of friction due to the irregularity of their surface. Some manufacturers, in an attempt to solve these last two problems have incorporated a metal slot into the plastic bracket.

Ceramic brackets which were introduced into clinical practice at the end of the 1980s overcame the aesthetic limitations of the plastic brackets to some extent, being more durable and resistant to staining. Also torque may be readily expressed by these brackets. The ceramic brackets currently on the market are made of aluminium oxide (Al₂O₃) (Swartz, 1988) and may be divided into two groups, monocrystalline and polycrystalline brackets.

Ceramic brackets have been widely used, but various difficulties have emerged, including breakage, increased friction, wear of those teeth in contact with the brackets (which are harder than the tooth enamel) and damage to the enamel during removal. In order to reduce the risk of breakage, the brackets have a much more bulky design than metallic brackets. Øgaard and Rolla (1988), Viazis et al. (1989), Ghafari (1992), and Proffit (1992) have recommended that ceramic brackets should only be used on upper anterior teeth.

A further problem with ceramic brackets can occur during debonding. These brackets have mechanical and/or chemical union to the adhesive.
The chemical union (silanization) increases the adhesion capacity to sufficiently high levels to cause damage to the surface enamel (Swartz, 1988; Storm, 1990; Viazis et al., 1990, 1993; Jeiroudi, 1991; Winchester, 1991) or fracture of the bracket (Britton et al., 1990; Chaconas et al., 1991) when they are removed. Viazis et al. (1993) and Swartz (1988) found that mechanically retained ceramic brackets did not present such problems in debonding. Viazis et al. (1990) and Winchester (1991) reported higher bond strength with silanized ceramic bases than with mechanical retention bases (Gwinnett, 1988; Britton et al., 1990; Harris et al., 1992; Blalock and Powers, 1995). The latest generation of ceramic brackets use mechanical retention which, on the evaluation of their bonding capacity, show results equivalent to metal brackets (Ødegaard and Segman, 1988; Harris et al., 1992).

The bases of both metal and new plastic brackets rely on mechanical retention. The adhesive material flows into the grooves which form a fine grid over the back of the base of the bracket.

The aim of this research was to evaluate the bond strength of the bases of two aesthetic brackets, one plastic and the other ceramic, representing the latest generations of brackets, and to compare them with a metal bracket. This evaluation was carried out by measuring the tensile bond strength and site of fracture.

Materials and methods

The types, retention systems, trade names, and manufacturers of the brackets used in this study are shown in Table 1.

<table>
<thead>
<tr>
<th>Code</th>
<th>Type</th>
<th>Method of retention</th>
<th>Product</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP</td>
<td>Plastic, metallic slot</td>
<td>Mechanical</td>
<td>Spirit MB®</td>
<td>Ormco Corporation (California, USA)</td>
</tr>
<tr>
<td>ALL</td>
<td>Polycrystalline ceramic</td>
<td>Mechanical</td>
<td>Allure IV®</td>
<td>G.A.C. Orthodontics Products (New York, USA)</td>
</tr>
<tr>
<td>M</td>
<td>Metallic</td>
<td>Mechanical</td>
<td>Mini Standard Edgewise®</td>
<td>American Orthodontics Corp. (Wisconsin, USA)</td>
</tr>
</tbody>
</table>
cent phosphoric acid solution, sprayed with water during a further 60 seconds and gently dried. The jig containing the bracket was then bonded to the tooth, using Concise (3M Unitek, Monrovia, California, USA). The samples were stored for 24 hours in deionized water at 37°C in order to allow them to reach maximum adhesion (Blalock and Powers, 1995). A second jig was set up using a device which brought the bases of both jigs into parallel positions, ensuring an exact vertical distribution of force. Tensile testing was performed and the force at debond measured. Ten samples of each bracket-cement combination were prepared and tested making a total of 30 tests.

The fracture site was determined using the Adhesive Remnant Index, developed by Årtun and Bergland in 1984 (Table 2), using an optical microscope.

The data were checked for normality using the Kolmogrov–Smirnov non-parametric test and analysed using the ANOVA. The level of significance used throughout the statistical examination was 5 per cent ($P = 0.05$).

Results

Table 3 shows the nominal area of the base and the mean tensile bond strength for each bracket.
Bracket M produced the highest bond strength mean (13.21 N), followed by SP (12.01 N), and ALL (8.88 N). Tukey’s test determined significant difference ($P = 0.01$) between all the sets of brackets ALL-M, M-SP, and ALL-SP.

The location of fracture for each test sample indicates which point in the system is weakest. There are three possible locations in this experiment, within the body of the cement itself, at the enamel-cement union, and at the cement-bracket union.

Table 4 shows the distribution of fracture sites according to the bracket used. For the ALL bracket, all the fractures occurred at the cement-bracket union. Bracket M showed 86 per cent of breakage occurring at the cement-bracket union with the remaining 14 per cent at the enamel-cement union. With regard to the SP bracket 80 per cent of fractures were at the cement-bracket union, 16 per cent within the cement itself and 4 per cent at the enamel-cement union. Fracture of enamel-cement union was rare and associated with bracket M and SP, and fracture within the cement was associated only with bracket SP.

Discussion

The results of this study must be considered with regard to:

1. The progressive increase of force and the type of force applied to the brackets under laboratory conditions is not representative of the forces which occur in clinical cases (Zachrisson, 1994). In the mouth the brackets are not only subjected to forces of tension, but also to shearing and twisting and to combinations of all of these. No experiments exist, either in the laboratory or in the clinic, which could constitute a valid measurement of each factor separately (Blalock and Powers, 1995).

2. The conditions in the oral cavity, with variations in temperature, humidity, acidity, the presence of plaque, and other stresses cannot be reproduced in the laboratory (Newman...
et al., 1994). Clinically, a higher failure rate may be observed in the enamel-cement interface than has been noted under laboratory conditions, because the ideal conditions for acid etching are much more difficult to achieve in vivo. Factors such as humidity, temperature, time, and patient mobility cannot be controlled in clinical tests.

In spite of all this, laboratory tests are necessary for the initial evaluation of adhesives and may provide background information for further clinical studies. However, for the reasons already stated, clinical testing may be extremely difficult to carry out and in some cases impossible, and when results are obtained these may be inconclusive due to the combination of uncontrollable factors.

The use of the metal bracket in this study serves as a control with which to compare the data obtained from the other types of bracket. The bond strength and behaviour during debonding remain closest to the ideal (Matasa, 1992).

In published literature into the adhesion of brackets to cement, three types of substrate have been used: human or cattle teeth and plastic cylinders. It can be difficult to find sufficient human teeth of the same type with intact enamel (i.e. without cavities or decalcifications), and which have been stored under equivalent conditions following extraction. Those human teeth which tend to retain the best preserved enamel are premolars extracted for orthodontic reasons, but it can be difficult to collect a sufficiently high number over a relatively short period of time. The use of plastic cylinders as a substrate restricts the examination of bonding systems to the cement-bracket union. Smith and Casko (1976) and Nakamichi et al. (1986) who carried out comparative studies of the adhesive capacity of resins and cements to the enamel of both human and bovine teeth did not find a significant difference, although the values were slightly lower in cattle thus justifying their use as a substrate for the testing of adhesive systems. These results together with the ability to study the failure of the bonding system at each interface and the relative ease with which results are obtained, render the use of bovine teeth a suitable alternative to either plastic or human teeth (Lopez, 1980; Ødegaard and Segman, 1988; Maskeroni et al., 1990; Gaffey et al., 1995; Sinha et al., 1995; Trimpeneers et al., 1996).

The control over ambient factors and the standardization of sample preparation reduce the experimental variability. This together with the fact that the range of sample quantities varied between 6 and 13 in other investigations (Buzzitta et al., 1982; De Pulido and Powers, 1983; Viazis et al., 1990; Winchester, 1991; Newman et al., 1994) justify the number of samples used in this study.

The metal bracket M showed the maximum resistance to tension (13.21 N) followed by the plastic bracket SP (12.01 N) and the ceramic bracket ALL (8.88 N). These results differ from previous reports of bond strength of 6.9 N for bracket ALL and 10.3 N for SP (Blalock and Power, 1995). These differences may be attributable to the fact that in this study the latest generation brackets were studied as compared with those used by these researchers. These are the SP not requiring a primer and the ALL with mechanical retention; neither of which have been evaluated previously.

The differences found between the values obtained for bond strength when the area of the base is considered and those of other researchers (Blalock and Power, 1995), may be interpreted as a change in the manufacturing methods of the bases. It should be pointed out that the ceramic bracket show the lowest bond strength once silanization has been eliminated and the plastic bracket produces adequate bond strength in spite of not requiring a primer.

The results obtained in this study with regard to the most frequent fracture site agree with those found in other investigations (Lopez, 1980; Buzzitta et al., 1982; De Pulido and Powers, 1983; Gwinnett, 1988; Ødegaard and and Segman, 1988; Britton et al., 1990; Harris et al., 1992; Gaffey et al., 1995), and it has been established that acid etched enamel offers a higher retentive capacity than the bracket base and in some cases even greater than the capacity of the adhesive material itself. The differences between the results of the present study and those previously described may be due to the fact that the bond
strength testing was in tension not shear or peel. The bracket ALL did not show any fracture at the interface with the enamel surface, which suggests the elimination of debonding problems previously associated with ceramic brackets.

Conclusions
1. Bracket M showed the greatest resistance to debonding (13.21 N), followed by bracket SP (12.01 N) and, lastly, the ALL bracket (8.88 N).
2. The site of bond failure occurred primarily at the cement-bracket interface. Small percentages were found at the enamel-cement interface for bracket M (14 per cent) and SP (4 per cent). The occurrence of failure within the body of the cement itself was only to be found with the bracket SP (16 per cent). For bracket ALL all fractures occurred at the cement-bracket interface which may imply that the problem of enamel damage has been reduced. The results show that, under laboratory conditions, the enamel-adhesive bond strength is greater than the bracket-adhesive bond strength.

Address for correspondence
Leandro Fernandez
Paseo de Reding 43, 1-d
29016 Malaga
Spain

Acknowledgements
The authors wish to express their gratitude to Kalma-Ormco, GAC-Orthospain, OLBA-American Orthodontics, and 3M-Unitek for their generous support.

References
Proffit W R 1992 Contemporary orthodontics. Mosby Year Book, St Louis