Intra- and inter-examiner reliability of intraoral malocclusion assessment

Maja Ovsenik*, F. Farčnik* and I. Verdenik**
Departments of *Orthodontics and **Obstetrics and Gynaecology Research Unit, Medical Faculty, University of Ljubljana, Slovenia

SUMMARY Malocclusion assessment methods are based on measurements of study casts, which requires that impressions be taken. In addition to being costly and time consuming, this process can be unpleasant for children. Therefore, the aim of this study was to evaluate intra- and inter-examiner reliability of intraoral score measurements to determine malocclusion severity in the permanent dentition. The research was a part of a longitudinal study from which a cohort of 92 children (39 boys, 53 girls), with a mean age of 14.8 years (standard deviation = 0.18), were randomly selected and classified into severity grades based on total malocclusion score. Subsequently, 12 children were randomly selected for a reliability study to assess intra-examiner reliability of malocclusion trait measurements. Nine subjects gave informed consent to participate in the study. Quantitative registrations of space and occlusal anomalies were performed intraorally by five examiners, on two occasions with a 1-month interval between the two measurements. Intra- and inter-examiner reliability was determined using intraclass correlation coefficients (ICCs).

Overall classification into severity grades, based on total malocclusion score, showed almost perfect intra-examiner reliability for all examiners (ICC = 0.97–0.99); inter-examiner ICC was almost perfect (0.97). Near perfect intra-examiner reliability was determined for eight occlusal trait measurements (ICC = 0.89–1.0); substantial reliability for midline deviation (ICC = 0.68), overbite (ICC = 0.78), but large variability for space condition assessment (ICC = 0.42–0.52). Inter-examiner reliability was almost perfect for the eight traits (ICC = 0.81–1.0); substantial reliability for midline deviation (ICC = 0.65), and axial tooth inclination (ICC = 0.75), but large variability for space condition assessment (ICC = 0.13–0.26).

Intra- and inter-examiner malocclusion assessment, recorded and measured intraorally to determine malocclusion severity scores in 14-year old children, is reliable. It is therefore proposed as the method of choice to be used not only in epidemiological studies and screening but also in clinical orthodontic assessment.

Introduction

Different countries have adopted varying methods of funding orthodontic care for children. In countries that embrace the principle of publicly funded orthodontic care for all children with high objective need, reliable population data are required to evaluate the effectiveness of orthodontic services (Burden et al., 2001).

Malocclusion assessment methods differ not only in the choice of the recorded morphological or functional criteria used but also in the mode of their evaluation. It can be undertaken on study casts (Summers, 1971; Eismann, 1974, 1980; Farčnik et al., 1985, 1988; Brook and Shaw, 1989; Richmond et al., 1992), clinically (Baume et al., 1974; Cons et al., 1986; Brook and Shaw, 1989; Richmond et al., 1992; Ovsenik et al., 2004), or both (Grainger, 1967; Brook and Shaw, 1989; Richmond et al., 1992; Uğur et al., 1998; Daniels and Richardson, 2000).

Indices of orthodontic treatment need to have the potential both for acquiring descriptive data on the distribution of treatment need in populations (epidemiological use) and for establishing priorities for treatment (administrative use; Helm, 1970; Espeland et al., 1992; Tang and Wei, 1993; Burden et al., 2001; Liepa et al., 2003). Generalized use of an index by individual members of the speciality would depend, in part, on the reliability of the various descriptors of malocclusion. Health care providers are often unaware of the imperfect reliability of the methods and data of clinical practice. In clinical orthodontics, the assessment of malocclusion remains problematic (Keeling et al., 1996; Ovsenik et al., 2004). Malocclusion indices (Occlusal Index: Summers, 1971; Index of Orthodontic Treatment Need: Brook and Shaw, 1989; Index of Complexity, Outcome, and Need: Daniels and Richmond, 2000) have been shown to have acceptable reliability (Brook and Shaw, 1989; Buchanan et al., 1993; Burden et al., 2001; Fox et al., 2002; Johansson and Follin, 2005). However, the reliability of the individual measurements that are scored has only been reported by Keeling et al. (1996) and Ovsenik et al. (2004).

The indices have proved to be complicated and time consuming in daily use (Solow, 1995; Ovsenik et al., 2004). In some countries, a system has been developed in which various types of malocclusion are graded into four categories, depending on the type and severity of deviation (Brook and Shaw, 1989; Espeland et al., 1992; Solow, 1995) or especially modified for use in oral health surveys (Burden et al., 2001).
In Slovenia, the Eismann index is used as a method for epidemiological studies, in training specialists and undergraduate students, in research, as well as by public health care organizations to help determine the level of a third-party payment. As orthodontic treatment in Slovenia is publicly funded for all children and adolescents up to the age of 18 years, regardless of malocclusion severity, the problem of treatment priority arises.

In order to assess malocclusion in the early dental development period, the method of Eismann (1974) was modified for the primary and mixed dentition (Farčnik et al., 1985, 1988) and used in Slovenia in a longitudinal study as an indicator of interceptive treatment results (Korpar et al., 1994). The two methods to obtain study casts are often quite unpleasant, especially for children, while the procedure itself can be costly, complicated, and time consuming in daily use (Solow, 1995; Ovsenik et al., 2004).

It has been established that malocclusion assessment in the early mixed dentition period, based on intraoral measurements, is as reliable as that carried out on study casts and is the method of choice in epidemiological studies, in screening, and in clinical orthodontic assessment (Ovsenik et al., 2004). Application of the proposed method in clinical orthodontics is preferred as it requires less clinical time when compared with assessment based on study cast measurements. The reliability of intraoral malocclusion assessment in the period of the permanent dentition according to the Eismann (1974) method has not yet been evaluated.

Therefore, the aim of the present study was to assess the reliability of occlusal traits, recorded and measured intraorally to compute the malocclusion score, to determine malocclusion severity in the permanent dentition period, and to identify intraorally determined measurements of malocclusion that have poor intra- and inter-examiner reliability.

Subjects and methods

The research, approved by the Ethics Committee, University of Ljubljana, Medical Faculty, Division for Dentistry (Ovsenik, 2003), was a part of a longitudinal study (Farčnik et al., 1986) in Slovenia on a sample of 530 three-year-old children. A cohort of 92 children (39 boys, 53 girls), with a mean age of 14.8 years (standard deviation = 0.18), were randomly selected and classified into severity grades based on total malocclusion score. Subsequently, 12 children were selected at random for a reliability study to assess intra- and inter-examiner reliability of malocclusion trait measurements by five examiners trained in the use of the index. Nine subjects gave informed consent to participate in the study. The measurements were performed on all five occasions by all five examiners.

Examiners

Examiner A: An orthodontic specialist with 1 year’s clinical experience who had completed training in malocclusion assessment based on intraoral measurements of morphological malocclusion traits.

Examiner B: An orthodontic specialist with 1 year’s clinical experience who had completed training in malocclusion assessment based on morphological malocclusion traits measurements intraorally and on study casts.

Examiner C: An orthodontic specialist with 5 years’ clinical experience who had completed training in malocclusion assessment based on intraoral morphological trait measurements.

Examiner D: An orthodontic specialist with 30 years’ clinical experience who had completed training in malocclusion assessment based on morphological trait measurements intraorally and on study casts.

Examiner E: A postgraduate orthodontic student with 1 year’s clinical experience who had completed training in morphological trait measurements on study casts.

Each examiner used a head-held light, rulers, gloves, and completed a scoring form for each child (Figure 1), which also included demographic and malocclusion variables.

Training of the examiners

Prior to the start of recordings and measurements, the five examiners met over a period of 2 months to determine the data to be collected and to practise using the index both on study casts and intraorally. The examinations were performed independently in dental chairs in five dental practices, by all five examiners.

Recordings and measurements

For each set of measurements, the registrations were carried out according to the Eismann (1974) scoring form (Figure 1). For measurements of linear dimensions, a metric ruler (Zürcher modell, 042-751; Dentaurum, Ispringen, Germany), accurate to 1/10 mm, was used. Angles were measured with a protractor (Eismann, 1974) to determine the rotation of the incisors and the axial inclination of the teeth.

Intra-arch assessment involved measurement of anterior and posterior crowding and spacing, rotation of the incisors, and axial inclination of the teeth. For inter-arch measurements, overbite, anterior and posterior open bite, overjet, reverse overjet, anterior and posterior crossbite, and buccal segment relationships were recorded.

All morphological signs, measured intraorally and expressed in millimetres and degrees, were weighted and scored against the Eismann (1974) evaluation table for each subject (Figure 2). The weighted sum of the recorded occlusal traits thus represented the total malocclusion index severity score. The overall malocclusion scores were categorized according to Eismann (1974) in terms of mild (1–15), moderate (16–40), severe (41–65), and very severe (over 66) malocclusion.
Statistical analysis

The intraclass correlation coefficient (ICC) was used to evaluate the intra- and inter-examiner reliability of 14 occlusal trait measurements, recorded and measured intraorally. ICC values equal to 0 represent agreement equivalent to that expected by chance, while 1 represents perfect agreement. In accordance with Landis and Koch (1977), the following ICC interpretation scale was used: poor to fair (below 0.4), moderate (0.41–0.60), excellent (0.61–0.80), and almost perfect (0.81–1).

For the analysis, the Statistical Package for Social Sciences Windows, version 12 (SPSS Inc., Chicago, Illinois, USA) was used.

Results

Classification of malocclusion scores into grades of severity

The classification of malocclusion scores into four severity grades is shown in Figure 3. Most of the children were classified as grade 1 or 2 (score 1–40), with only one child classified as grade 4 (score = 99).

Intra-examiner repeatability (ICC) for the 14 morphological signs and five examiners

Almost perfect intra-examiner reliability was determined for the eight occlusal trait measurements (ICC = 0.89–1.0), excellent reliability for midline deviation (ICC = 0.68) and
RELIABILITY OF INTRAORAL MALOCCLUSION ASSESSMENT

The highest intra-examiner agreement of space condition assessment intraorally was found for examiner D (ICC = 0.70). Despite the fact that there was intra-examiner variability in scoring space conditions, almost perfect intra-examiner reliability for total malocclusion assessment and for classification into grades of severity was determined (ICC = 0.97–0.99).

overbite (ICC = 0.78), but in the assessment of dental arch crowding (ICC = 0.40–0.80) and spacing (ICC = 0.25–0.82) there was large variability among all five examiners (Table 1).

Inter-examiner repeatability (ICC) for the 14 morphological signs among the five examiners

The inter-examiner reliability (repeatability) among the morphological scores, measured intraorally among the five examiners, was assessed by the ICC test. The results are presented in Table 2.

Perfect agreement of intraoral malocclusion trait measurements among the examiners was found for eight

Figure 2 The Eismann scoring table (reproduced with kind permission).
occlusal traits (ICC = 0.8–1.00) and excellent agreement for measuring axial tooth inclination (ICC = 0.60) and midline deviation (ICC = 0.65). Large variability among the five examiners, however, was found for intraoral assessment of dental arch spacing and crowding (ICC = 0.13–0.26). Despite poor inter-examiner reliability for space condition assessment, the agreement of examiners in assessment of total malocclusion severity score (ICC = 0.97) and classification into severity grades (ICC = 0.94) was almost perfect.

Discussion

There is considerable international interest in guidelines for the screening of children for orthodontic treatment (Solow, 1995). New malocclusion indices and indices of treatment need are being developed and tested in many countries (Brook and Shaw, 1989; Espeland et al., 1992; Burden et al., 2001; Tausche et al., 2004; Johansson and Follin, 2005), and their deficiencies are well recognized.

Malocclusion assessment methods for screening and epidemiological studies were designed either for study cast measurements (Summers, 1974; Helm, 1977; Ghafari et al., 1989) or for clinical use (Baume et al., 1974; Cons et al., 1986; Brook and Shaw, 1989; Richmond et al., 1992; Uğur et al., 1998; Daniels and Richmond, 2000; Burden et al., 2001; Ovsenik et al., 2004). The method proposed by Baume et al. (1974) was designed for observations and measurements to be made directly in the mouth. Although there are certain advantages and conveniences in undertaking measurements on casts, obtaining these may not be possible under many field conditions (children, costs, time) and thus, for consistency the assessments are limited to direct observations (Baume et al., 1974; Ovsenik et al., 2004).

In clinical orthodontics, malocclusion assessment remains problematic. Index scores have been shown to have acceptable reliability (Brook and Shaw, 1989; Richmond et al., 1992). However, the reliability of the individual measurement that compute these scores has only been reported by Keeling et al. (1996) and Ovsenik et al. (2004). As studies assessing the reliability of scoring components of malocclusion have most frequently been performed on diagnostic records, reports on the reliability of assessing an individual malocclusion trait during clinical examination of subjects are scarce.

In a study by Ovsenik et al. (2004) it was determined that the total malocclusion severity score, composed of 10 morphological signs as in the method of Eisamann modified by Farčnik et al. (1985), was no different when recorded

Table 1 Intra-examiner repeatability (intraclass correlation coefficient) for 14 morphological signs and five examiners.

<table>
<thead>
<tr>
<th>Malocclusion trait</th>
<th>Examiner</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Anterior crowding</td>
<td>0.40</td>
<td>—</td>
</tr>
<tr>
<td>Anterior spacing</td>
<td>0.38</td>
<td>0.82</td>
</tr>
<tr>
<td>Posterior crowding</td>
<td>0.80</td>
<td>0.41</td>
</tr>
<tr>
<td>Posterior spacing</td>
<td>0.25</td>
<td>0.82</td>
</tr>
<tr>
<td>Vestibular eruption of canine</td>
<td>0.88</td>
<td>1.00</td>
</tr>
<tr>
<td>Axial tooth inclination</td>
<td>0.93</td>
<td>0.96</td>
</tr>
<tr>
<td>Rotation of incisors</td>
<td>1.00</td>
<td>0.93</td>
</tr>
<tr>
<td>Overbite</td>
<td>0.84</td>
<td>0.80</td>
</tr>
<tr>
<td>Anterior and posterior open bite</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Anterior crossbite</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Overjet</td>
<td>0.76</td>
<td>0.87</td>
</tr>
<tr>
<td>Buccal segment relationships</td>
<td>0.91</td>
<td>0.78</td>
</tr>
<tr>
<td>Midline deviation</td>
<td>0.43</td>
<td>0.73</td>
</tr>
<tr>
<td>Transverse posterior occlusion</td>
<td>0.74</td>
<td>0.94</td>
</tr>
<tr>
<td>Malocclusion severity score</td>
<td>0.98</td>
<td>0.97</td>
</tr>
<tr>
<td>Classification into severity grades</td>
<td>0.96</td>
<td>0.91</td>
</tr>
</tbody>
</table>

*As the teeth in the dental arch were rotated and inclined in some subjects and different cut-off points were used by examiners C and D, no malocclusion trait was recorded.
intraorally or on study casts. Some occlusal traits were scored intraorally with high values, and some lower, but in most cases the measurements were scored equally for both, and thus malocclusion assessment between the two methods did not differ significantly. An equal percentage of children were classified into each grade of malocclusion severity, regardless of the recorded method. Thus, the modified method for malocclusion assessment in the early dental development period in the mixed dentition can be used as an epidemiological tool for screening and in the identification of children who can most benefit from orthodontic treatment.

Malocclusion indices were designed to interpret malocclusion severity objectively in terms of treatment priority. Eismann (1977) suggested four grades of severity, into which the present sample was classified. Most of the children were classified as grade 1 or 2, which is in agreement with other studies on orthodontic treatment need obtained using other malocclusion assessment methods (Brook and Shaw, 1989; Holmes, 1992; Uğur et al., 1998; Burden et al., 2001; Tausche et al., 2004). Any index should be valid and reliable for one examiner and among examiners (Richmond et al., 1992). The results show that an almost equal percentage of children were classified into the four severity grades by a single examiner and among the examiners, with the corresponding ICC as high as 0.96 and 0.94, indicating almost perfect intra- and inter-examiner agreement.

Almost perfect intra-examiner agreement was determined for all examiners, with the highest results for Examiner D with the longest clinical experience in orthodontics and also in the use of the method; on the other hand, excellent agreement was determined for examiner E, who had the least clinical orthodontic experience and in the use of the method (Table 1). Intra-examiner agreement was almost perfect for eight occlusal trait measurements, and substantial for two occlusal traits. The reliability results were higher for all the trait measurements due to the fact that registrations were performed in a practice setting on a dental chair, with good lighting and no time limitation, compared with the results achieved by Keeling et al. (1996) and also because all the examiners had had training in the use of the method intraorally and on the study casts, with written instructions in the use of the method.

Variability of the five examiners was, however, found for space condition assessment in the dental arches (Table 1). The poor to fair reliability for the measurement of crowding may be related to dental arch crowding and spacing. In the present study, crowding was recorded according to the method of Björk et al. (1964). In crowding of either incisors or in the buccal segments, the teeth are positioned lingually or buccally and are rotated or inclined, and thus different cut-off points can be determined, which results in poor reliability both for a single examiner and among the examiners. In the methods used by other researchers (Grainger, 1967; Brook and Shaw, 1989; Ghafari et al., 1989; Uğur et al., 1998; Tang and Wei, 1996), space condition assessment records the potential tooth displacement and is, as such, unreliable. Crowding has been determined to be the most common anomaly (Helm, 1970, 1977; Eismann, 1974; Farénik et al., 1985, 1988; Brook and Shaw, 1989; Ghafari et al., 1989; Thilander et al., 2001; Ovsenik et al., 2004) and thus well defined cut-off points in the assessment of space conditions in the dental arch would certainly improve its reliability for a single examiner and among examiners. Poor reliability among orthodontists in scoring crowding revealed that clinical orthodontic definitions for crowding assessment are imprecise. Therefore, methods to improve diagnostic terms, altering measurement scales, more rigid definitions, and a more systematic approach in training orthodontic specialists should be considered (Keeling et al., 1996).

The four examiners, for whom almost perfect agreement in measurements of malocclusion traits was found, represent the population of experts (orthodontic specialists), who would use the proposed method of malocclusion assessment intraorally in everyday routine clinical work. The data demonstrate that the method is reliable and worthwhile to be used widely in the field of clinical orthodontics. The results for Examiner E showed excellent intra- and inter-examiner agreement, while those for the orthodontic specialists showed that increased clinical experience additionally improved the intra- and inter-examiner reliability. Therefore, the reliability among dentists with special training in orthodontics should be further evaluated. As all the traits were easy to record, with suitable training and calibration it may also be possible for less highly trained personnel to apply the index (Brook and Shaw, 1989; Keeling et al., 1996; Burden et al., 2001).

Conclusions

The results obtained from determining the intra- and inter-examiner reliability of intraoral measurements that compute the total malocclusion severity score support the following conclusions.
1. Almost perfect to good intra- and inter-examiner reliability was determined for almost all occlusal trait measurements. Despite poor intra- and inter-examiner reliability for space condition assessment, the malocclusion severity grade, defined by total malocclusion severity score, showed almost perfect agreement for one examiner and among the examiners.

2. Malocclusion assessment in a clinical orthodontic setting based on intraoral measurements is reliable for one examiner and among the examiners. It is therefore proposed as the method of choice to be used not only in epidemiological studies and screening but also in clinical orthodontic assessment.

Address for correspondence
Maja Ovsenik
Department of Orthodontics, Medical Faculty
University of Ljubljana
Zaloska 2
1000 Ljubljana
Slovenia
E-mail: maja.ovsenik@dom.si

References
Cons N C, Jenny J, Kohout F J 1986 DAI: Dental Aesthetic Index. College of Dentistry University of Iowa, Iowa City
Eismann D 1977 The morphology of the dentition as one criterion in the assessment of the need for orthodontic treatment. Transactions of the European Orthodontic Society pp. 125–129
Fox N A, Daniels C, Gilgrass T 2002 A comparison of the Index of Complexity, Outcome and Need (ICON) with the Peer Assessment Rating (PAR) and the Index of Orthodontic Treatment Need (IOTN). British Dental Journal 193: 225–230