Orthodontic force decreases the eruption rate of rat incisors

M. Drevenšek*, J. Volk*, Š. Sprogar**,*** and G. Drevenšek**
*Department of Orthodontics, **Institute of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Ljubljana and ***Ort-line, Institute for Orthodontics and General Dentistry, Slovenia

SUMMARY The aim of this study was to determine whether a force applied in an antero-posterior direction would adequately reduce incisor eruption. This is needed to achieve a constant direction of force which is one of the demands for a good model for studying orthodontic tooth movement. Twenty male Wistar rats aged 11–12 weeks were divided into two equal groups: in the appliance group, a superelastic closed coil spring (25 cN) was placed between the upper left first molar and the incisors. The control group consisted of animals without an appliance. In both groups, cuts were created on the labial surfaces of the upper and lower incisors. The distance from the gingival reference point to the midpoint of the cut was measured for 10 days at 2 day intervals. Upper incisor inclination was determined as the distance from the most mesial point of the upper left first molar to the incisal edge of the ipsilateral incisor on days 0 and 10. Statistical analysis was carried out using two-way analysis of variance and a Bonferroni post-test to estimate reliability.

The eruption rates of the maxillary incisors in the appliance group were significantly decreased when compared with the control group during the whole experiment. In the appliance group, the eruption rates of the mandibular incisors were decreased more than those of the maxillary incisors ($P < 0.01$). There was no difference in incisor inclination between the appliance and control groups on day 10 ($P = 0.81$). The applied force of 25 cN in an antero-posterior direction diminished incisor eruption to a level which enabled a constant direction of orthodontic force for 10 days.

Introduction

Both clinicians and researchers have observed individual differences in the amount and rate of orthodontic tooth movement (OTM) despite the same force systems being used (Pillon et al., 1996; van Leeuwen et al., 1999; von Böhl et al., 2004). Biological responses to force application are complex. To understand the biological mechanisms, animals have been widely used in experimental studies of OTM (Pillon et al., 1996; Guajardo et al., 2000; Verna et al., 2004; de Carlos et al., 2006). Different animal species have been used (dogs, cats, monkeys, and pigs), but the use of rats predominates. They are considered to be suitable for studying OTM (Ren et al., 2004). A good animal model has to meet the following demands: a constant direction and action of orthodontic force, a constant and adequate orthodontic force magnitude, and an accurate method of measuring tooth displacement. The continuous eruption of rat incisors is a physiological aspect which should be considered in establishing a good rat model for studying OTM. It can change force direction and cause a loss of anchorage (Ren et al., 2004).

Rat incisors grow continuously, displaying the complete life cycle of tooth development from inception to maturity (Schour and Massler, 1949). Several studies have examined the influences on the eruption rates of rat incisors, and in some of them, the role of shortening of the rat incisors on their eruption rates had been evaluated (Burn-Murdoch, 1995, 1999; Risnes et al., 1995; Moxham, 2002; Law et al., 2003). It has been suggested that the eruption rates are determined by the sum of the lengths of the upper and lower incisors, rather than by their lengths (Burn-Murdoch, 1999). There is no effect of the consistency of the diet on the eruption rates and lengths of rat incisors (Burn-Murdoch, 1993). It has also been found that a vertically applied force diminishes or completely stops the eruption of rat incisors (Burn-Murdoch, 1981; Chiba et al., 1996; Shimada et al., 2003).

To compensate for incisor eruption in a rat model, Ren et al. (2004) suggested drilling a transverse hole through both the alveolar bone and the maxillary incisors at the mid-root level. Using this method, they found that eruption of incisors was completely stopped (Ren et al., 2004). Most other studies of OTM did not take incisor eruption into consideration (Ong et al., 2000; Jäger et al., 2005; de Carlos et al., 2006; Mermut et al., 2007).

One of the demands for a good rat model for studying OTM is a constant direction of orthodontic force. The aim of the present study was to determine whether a force of 25 cN applied to the teeth in an antero-posterior direction would adequately reduce incisor eruption in order to establish a good model for studying OTM in rats.

Materials and methods

The research was approved by the Veterinary Administration of the Republic of Slovenia (No. 323-02-234/2005/2).
Twenty male Wistar rats, aged 11–12 weeks and weighing from 300 to 340 g, were used. The rats were housed in groups of five in polycarbonate cages (Ehret, Emmendingen, Germany) with 12 hour circadian conditions. The temperature and humidity were maintained at constant levels of $24 \pm 1^\circ{\text{C}}$ and 60 to 75 per cent, respectively. The animals were fed on a standard laboratory rodent diet chow (KZ Krka, Novo mesto, Slovenia), which was soaked to facilitate food intake, and took water ad libitum from a standard bottle with a metal delivery tube. The animals were divided into two groups ($n = 10$): in the appliance group, a superelastic closed coil spring was placed between the upper left first molar and the upper incisors. The control group consisted of animals without an appliance.

Placement of the appliance was performed under general anaesthesia induced by a mixture of anaesthetics injected intraperitoneally: ketamine (Bioketan, Vetoquinol Biowet, Poland, 50 mg/kg), medetomidin hydrochloride (Domitor, Orion Pharma, Finland, 67 µg/kg), and thiopental (Tiopental, Pliva, Croatia, 8.3 mg/kg). This mixture ensured 15–20 minutes lasting anaesthesia, with no spontaneous muscle spasms and with no influence on the depth or frequency of breathing.

The orthodontic appliance consisted of a superelastic closed coil spring (25 cN, wire diameter 0.15 mm, eyelet diameter 1.5 mm, GAC International, Bohemia, New York, USA), which was placed between the upper left first molar and the upper incisors. The closed coil spring was attached to the upper left first molar by a stainless steel ligature wire (diameter 0.25 mm, Dentaurum, Ispringen, Germany) and to the upper incisors by surgical steel wire (4-0, multifilament, W310, Ethicon, Johnson & Johnson, New Brunswick, New Jersey, USA). To enhance fixation of the spring to the incisors, a hole was drilled with a stainless steel round bur (diameter 0.5 mm, Meisinger, Neuss, Germany) through the approximal surfaces of the maxillary incisors just above the lateral gingival margin, and the surgical steel wire was placed through the perforation. To diminish irritation of the soft tissues, a light-curing bonding material (Tetric Flow, Ivoclar Vivadent, Schaan, Lichtenstein) was used to cover the ligature and the surgical steel wire (Figure 1).

The superelastic properties of the material and the delivered force were tested on 10 randomly selected closed coil springs from a box of 20 springs. The springs were activated from 1–20 mm. The reproducible force of 25 cN was shown over a range of 3–8 mm activation (Drevenšek et al., 2006).

After the closed coil spring was attached to the teeth in the appliance group, cuts were created on the labial surfaces of the upper and lower incisors in both groups under general anaesthesia. The incisions were made at the level of the interdental papilla with a diamond disc (Horico Diamond Disk 346/90, Gresco Products Inc., Stafford, Texas, USA; Lee et al., 2002). The lowest point of the labial gingiva on each incisor was used as a reference point. The distance from the gingival reference point to the midpoint of the cut was measured for 10 days at 2 day intervals, using calibrated graticules in microscope eyepieces. The eruption rates were calculated as the distance the cut mark travelled per day (Lee et al., 2002). To test whether upper incisor inclination had changed, the distance from the most mesial point of the upper left first molar to the incisal edge of the ipsilateral incisor on days 0 and 10 was measured using a digitronic calliper with an accuracy ±0.01 mm (144-15D, Wilson & Wolpert, Utrecht, The Netherlands). All measurements were recorded twice by two investigators (SS and JV). Reliability was assessed using the intraclass correlation coefficient (ICC).

Statistical analysis was performed using two-way analysis of variance in GraphPad Prism 4.0 (GraphPad Software, San Diego, California, USA). A Bonferroni post-hoc test was used to estimate the reliability interval. Significance was set at $P < 0.05$.

Results

Reliability of measurements was within the standards; the mean values of the ICC for all measurements of incisor eruption rates and incisor inclination were 0.926 and 0.934, respectively. Therefore, the mean value of all measurements was used for further statistical analysis.

In the 10 day interval, the upper incisors in animals of the control group erupted 3.75 ± 0.03 mm and the lower incisors 4.86 ± 0.05 mm. In the appliance group, the eruption rates were 2.65 ± 0.03 and 2.12 ± 0.04 mm, respectively.

The eruption rates of the incisors from days 0 to 10 are given in Table 1. The eruption rates of both the upper and the lower incisors in the appliance group were significantly less at all time points except for the upper left incisor on day 8 compared with the control group.

Table 2 shows the measurements of incisor inclination (distance from the most mesial point of the upper left first molar to the incisal edge of the ipsilateral incisor) on days 0 and 10. There was no significant difference in incisor
The mean eruption rates of the incisors in the appliance group, where a 25 cN closed coil spring was attached between the upper left first molar and the incisors, were significantly lower than in the control group of rats with no appliance. In the upper jaw, the incisor eruption was reduced to 1.8 mm per week. No significant differences in incisor inclination between the appliance and control group were found during the 10 day experiment. This means that the displacement of the anchorage was negligible and that 1.8 mm of incisor eruption per week meets one of the demands for a good animal model for studying OTM, i.e. a constant direction of orthodontic force.

Table 1 Eruption rates of the rat incisors. The results are given as the mean ± 1 standard deviation in millimetres per day. Significant differences between the control and appliance groups are marked in 2 day intervals.

<table>
<thead>
<tr>
<th>Days</th>
<th>Control group</th>
<th>Appliance group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maxillary right incisor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–2</td>
<td>0.42 ± 0.05</td>
<td>0.26 ± 0.05***</td>
</tr>
<tr>
<td>2–4</td>
<td>0.40 ± 0.03</td>
<td>0.24 ± 0.08***</td>
</tr>
<tr>
<td>4–6</td>
<td>0.36 ± 0.05</td>
<td>0.25 ± 0.05**</td>
</tr>
<tr>
<td>6–8</td>
<td>0.35 ± 0.05</td>
<td>0.25 ± 0.09**</td>
</tr>
<tr>
<td>8–10</td>
<td>0.36 ± 0.10</td>
<td>0.27 ± 0.11*</td>
</tr>
<tr>
<td>Maxillary left incisor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–2</td>
<td>0.41 ± 0.03</td>
<td>0.28 ± 0.07***</td>
</tr>
<tr>
<td>2–4</td>
<td>0.39 ± 0.02</td>
<td>0.25 ± 0.08***</td>
</tr>
<tr>
<td>4–6</td>
<td>0.38 ± 0.03</td>
<td>0.28 ± 0.05**</td>
</tr>
<tr>
<td>6–8</td>
<td>0.31 ± 0.05</td>
<td>0.23 ± 0.12</td>
</tr>
<tr>
<td>8–10</td>
<td>0.37 ± 0.05</td>
<td>0.34 ± 0.25*</td>
</tr>
<tr>
<td>Mandibular right incisor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–2</td>
<td>0.52 ± 0.04</td>
<td>0.18 ± 0.05***</td>
</tr>
<tr>
<td>2–4</td>
<td>0.54 ± 0.05</td>
<td>0.26 ± 0.08***</td>
</tr>
<tr>
<td>4–6</td>
<td>0.51 ± 0.07</td>
<td>0.19 ± 0.08***</td>
</tr>
<tr>
<td>6–8</td>
<td>0.43 ± 0.06</td>
<td>0.18 ± 0.07***</td>
</tr>
<tr>
<td>8–10</td>
<td>0.44 ± 0.07</td>
<td>0.25 ± 0.19***</td>
</tr>
<tr>
<td>Mandibular left incisor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–2</td>
<td>0.51 ± 0.05</td>
<td>0.20 ± 0.05***</td>
</tr>
<tr>
<td>2–4</td>
<td>0.57 ± 0.06</td>
<td>0.26 ± 0.08***</td>
</tr>
<tr>
<td>4–6</td>
<td>0.50 ± 0.06</td>
<td>0.25 ± 0.04***</td>
</tr>
<tr>
<td>6–8</td>
<td>0.44 ± 0.07</td>
<td>0.15 ± 0.08***</td>
</tr>
<tr>
<td>8–10</td>
<td>0.39 ± 0.11</td>
<td>0.21 ± 0.15***</td>
</tr>
</tbody>
</table>

*P < 0.05, **P < 0.01, ***P < 0.001.

Table 2 Measurements of incisor inclination (D—from the most mesial point of the upper left first molar to the incisal edge of the ipsilateral incisor).

<table>
<thead>
<tr>
<th>Distance, D (mm)</th>
<th>Appliance group</th>
<th>Control group</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 0</td>
<td>14.47 ± 0.30</td>
<td>14.56 ± 0.36</td>
<td>P = 0.99</td>
</tr>
<tr>
<td>Day 10</td>
<td>14.75 ± 0.29</td>
<td>14.74 ± 0.33</td>
<td>P = 0.81</td>
</tr>
</tbody>
</table>

The differences in eruption rates of the incisors (eruption rate of the incisors in the control group minus eruption rate of the incisors in the appliance group) in the upper and the lower jaw were compared. The differences in the eruption rates between the control and appliance group in the lower jaw were significantly greater during the whole experiment compared with the differences in the upper jaw between the control and appliance group (Figure 3).

Discussion

The eruption rates of the incisors in the appliance group, where a 25 cN closed coil spring was attached between the upper left first molar and the incisors, were significantly lower than in the control group of rats with no appliance. In the upper jaw, the incisor eruption was reduced to 1.8 mm per week. No significant differences in incisor inclination between the appliance and control group were found during the 10 day experiment. This means that the displacement of the anchorage was negligible and that 1.8 mm of incisor eruption per week meets one of the demands for a good animal model for studying OTM, i.e. a constant direction of orthodontic force.
The force of eruption is generated in the periodontal ligament (PDL; Weinreb et al., 1997). It has been found that both systemic arterial blood pressure and tissue pressure change in the PDL are both involved in determining the position of the teeth (Yamaguchi et al., 1997; Shimada et al., 2004; Harari et al., 2005). It is assumed in the present study that during OTM, the applied force compressed the blood vessels in the PDL, resulting in a decrease of regional blood flow. This could be followed by a decrease in fluid volume and then a reduction of either pressure within the socket or the eruptive force (Shimada et al., 2004).

The force that restrained the eruption of the maxillary upper incisors was equally efficient for both incisors as there was no significant difference between the maxillary left and right incisors. The upper incisors were connected to each other by a surgical steel wire placed through the perforation. The control group showed similar incisor eruption rates as were found by other researchers using a similar recording method (Burn-Murdoch, 1995, 1999; Law et al., 2003; Harari et al., 2005). The force induced by the closed coil spring applied to the maxillary incisors acted in an antero-posterior direction but one of the force components could also act in the vertical direction. In some studies, the amount of vertical force which could stop incisor eruption was measured. The magnitude of force needed to stop eruption was estimated to be 1.3–13.7 mN (Burn-Murdoch, 1981), 9.1–9.8 mN (Chiba et al., 1996), and 2.9–4.2 mN (Shimada et al., 2003). In the present study, the incisors in the appliance group were still erupting despite the small vertical force needed to halt incisor eruption. It can therefore be concluded that the appliance delivered the force predominantly in a horizontal direction and the vertical component was negligible.

The closed coil spring in the upper arch affected the incisor eruption rates even more in the lower than in the upper arch (Figure 3). This is comparable with the results of Burn-Murdoch (1999) where it was found that slow eruption rates of incisors in one jaw were associated with slow eruption rates of incisors in the other jaw. That author also reported that occlusal forces slow eruption, and the lengths of the teeth alter either the magnitude or the effectiveness of the forces (Burn-Murdoch, 1999). In the present investigation, it was assumed that placement of the appliance changed the magnitude of the occlusal forces and therefore the eruption rate of the mandibular incisors was also affected.

The results of this study show that this rat model fulfils the demand for a constant direction of orthodontic force, which is needed for a good rat model for studying OTM. The eruption rates of the upper incisors in animals with the closed coil spring were minimized to the amount needed to enable a constant direction of orthodontic force. Drilling of a hole through the maxillary incisors just above the lateral gingival margin is needed to ensure correct positioning of the spring. To maintain the position of the spring, it is sufficient to perform the drilling on a weekly basis, when measurements of OTM are usually carried out. The procedure where the eruption rate of the incisors is stopped by connecting incisor roots with the wire placed through the hole which is drilled in the apical third of the roots could lead to the release of mediators which can affect the mechanism of OTM (Ren et al., 2004).

Conclusion

Orthodontic force applied between the upper left first molar and the maxillary incisors diminished the eruption rates of the incisors. The eruption rates were even more affected in the lower jaw, where there was no appliance. The eruption rates of the upper incisors in animals with a closed coil spring were reduced to an amount that enabled a constant direction of orthodontic force for 10 days.

Address for correspondence

Martina Drevenšek
Department of Orthodontics
Faculty of Medicine
University of Ljubljana
Zaloška cesta 2
1000 Ljubljana
Slovenia
E-mail: martina.drevensek@sod-slovenija.si

Funding

References

Burn-Murdoch R A 1999 The length and eruption rates of incisor teeth in rats after one or more of them had been unimpeded. European Journal of Orthodontics 21: 49–56

Moxham B J 2002 The effects of aging on the eruptive behavior of the mandibular incisor in male rats. Connective Tissue Research 43: 280–282

