The influence of asthma on face shape: a three-dimensional study

*Applied Clinical Research & Public Health, Dental School, **School of Computer Science & Informatics, Cardiff University, Cardiff and ***Avon Longitudinal Study of Parents and Children, University of Bristol, Bristol, UK.

Correspondence to: Ala Al Ali, Orthodontic Department, Cardiff University Dental Hospital, 2nd Floor, Graduate Room, Heath Park, Cardiff, CF14 4XY, UK. E-mail: AlAliAM@cardiff.ac.uk; dr.alaa97@hotmail.com

SUMMARY Respiratory activity may have an influence on craniofacial development and interact with genetic and environmental factors. It has been suggested that certain medical conditions such as asthma have an influence on face shape. The aim of the study is to investigate whether facial shape is different in individuals diagnosed as having asthma compared with controls. Study design included observational longitudinal cohort study. Asthma was defined as reported wheezing diagnosed at age 7 years and 6 months. The cohort was followed to 15 years of age as part of the Avon Longitudinal Study of Parents and Children. A total of 418 asthmatics and 3010 controls were identified. Three-dimensional laser surface facial scans were obtained. Twenty-one reproducible facial landmarks (x, y, z co-ordinates) were identified. Average facial shells were created for asthmatic and non-asthmatic males and females to explore surface differences. The inter-ala distance was 0.4 mm wider (95% CI) and mid-face height was 0.4 mm (95% CI) shorter in asthmatic females when compared with non-asthmatic females. No facial differences were detected in male subjects. Small but statistically significant differences were detected in mid-face height and inter-ala width between asthmatic and non-asthmatic females. No differences were detected in males. The lack of detection of any facial differences in males may be explained by significant facial variation as a result of achieving different stages of facial growth due to pubertal changes, which may mask any underlying condition effect.

Introduction

The development of an individual’s facial shape and form depends on the interactions of genetic factors with environmental factors, including the intensity and duration of the latter (Peng et al., 2005; Paternoster et al., 2012). Altered mechanics of breathing may influence the development of craniofacial structures (Cooper, 1989; Yamada et al., 1997) and interfere with normal mastication and swallowing, which favour harmonious facial growth (Moss, 1962). Nasopharyngeal obstruction often results in the mouth-breathing (Straub, 1994), leading to a change in head posture to compensate for the decrease in nasal airflow (Josell, 1995), which can result in disharmony in the growth and development of orofacial structures (Rubin, 1980).

Numerous systemic medical conditions can influence facial shape, such as type 1 diabetes (El-Bialy et al., 2000), growth hormone deficiency (Kjellberg et al., 2000; Van Erum et al., 1998) and asthma (Mattar et al., 2004; Richmond et al., 2009). Reduced somatic growth, which can accompany chronic asthma, is also associated with changes in facial structures in children (Kjellberg et al., 2000; Pirinen et al., 1994).

Asthma is a chronic disorder, characterized by the interaction of a number of asthma-related genes with environmental factors. The main characteristics include airway inflammation, intermittent airway obstruction and bronchial hypersensitivity, of which not all are necessarily present in patients to the same degree (Kiley et al., 2007). During the period of most rapid somatic growth after infancy, the prevalence of asthma changes. It has been reported that the prevalence of asthma is higher in boys under 15 years of age than girls of the same age and higher in females 15 years of age and above (To et al., 1996; Krishman et al., 2001; Schatz et al., 2003).

Patients with chronic asthma symptoms can present with an increased resistance of the lower airways with gas-trapping in the chest (Chaves et al., 2010). The altered mechanics of breathing associated with these changes can lead to shortening of the cervical respiratory muscles, which could alter head and cervical spine posture (Hruska, 1997; Lopes et al., 2007). This may cause dysregulation in the growth and development of the orofacial structures, including narrowing of the maxilla and lower development of the mandible (Bresolin et al., 1984; Solow and Sandham, 2002).

The aim of this study is to investigate differences in facial features in 15-year-old children taking part in a longitudinal follow-up study that were reported as having asthma at 7.5 years of age and a control group drawn from the same population.
Subjects and Methods

Sample

The children involved in this study were recruited from the Avon Longitudinal Study of Parents and Children (ALSPAC). The study was designed to explore how an individual’s genotype is influenced by environmental factors impacting on health, behaviour, and development of children (Golding et al., 2001). The initial ALSPAC sample consisted of 14,541 pregnancies. This was the number of pregnant women enrolled in the ALSPAC study with an estimated date of delivery between April 1991 and December 1992. Out of the initial 14,541 pregnancies, all but 69 had known birth outcome. Of these 14,472 pregnancies, 195 were twins, 3 were triplets, and 1 was a quadruplet pregnancy, meaning that there were 14,676 foetuses in the initial ALSPAC sample. Of these 14,676 foetuses, 14,062 were live births, and 13,988 were alive at 1 year.

Mothers were asked to complete postal questionnaires that covered a range of health outcomes, including asthma symptoms and whether a doctor had ever diagnosed asthma in their children at 7.5 years of age (Henderson et al., 2008). The cohort was re-called when the children were 15 years of age. Invitations were sent to 9,985 participants who reported that they were interested to take part in the clinics. Of these, 418 asthmatics (185 females, 233 males) and 3,010 controls (1,636 females, 1,374 males) were included in the study. Body weight and height was measured. The BMI was calculated as follows: BMI = weight(kg)/(height(cm)/100)^2.

Ethical approval was obtained from the ALSPAC Law and Ethics Committee and the Local Research Ethics Committees prior to the commencement of the study.

Facial imaging

Three-dimensional facial images of the subjects were captured using a pair of high-resolution Vivid 900 laser scanners (Konica Minolta Sensing Europe, Milton Keynes, UK), with a reported manufacturing accuracy of 0.1 mm (Kau et al., 2003). The scanners were controlled with Multi-scan software (Cebas Computer GmbH, Eppelheim, Germany), and right and left facial scans were saved in a vivid file format. Rapidform 2006 (INUS Technology, Seoul, Korea) was used to process and analyse the facial scans in the manner described in the following paragraphs. The right and left facial scans of each participant were registered and merged using a locally developed subroutine using Rapidform software. Three-dimensional facial images were normalized within a reference framework using three planes: sagittal (Y-Z plane), coronal (X-Y plane), and transverse (X-Z plane), as shown in Figure 1. The origin of the co-ordinate system was the point between the inner corners of the eyes (mid-endocanthion) (men), which, as previous research has shown, is the most stable facial landmark (Toma et al., 2009; Zhurov et al., 2010).

Twenty-one facial soft tissue landmarks (Figure 2, Table 1) were manually identified on each facial image (Toma et al., 2009, 2011), and the x, y and z co-ordinates were recorded. The reproducibility of these landmarks in the three dimensions has been reported previously, generally with an error of less than 1 mm for both intra- and inter-examiner assessments (Toma et al., 2009).

Soft tissue parameters were evaluated as follows: exR-exL (inter-eye distance), al-al (nose width), n-pg (total face height), Is-pg (lower face height), Is-men (mid-face height), exR-pg-exL (mid-face angle), s-sn-pg (face convexity), n-pr-sn (nose prominence), and prn-sn-Is (philtrum depth). The 9 facial parameters included in the analysis were those that describe the main anterior-posterior, vertical and transverse relationships in facial shape analysis. For example, the inter-eye distance and nose width allow transverse analysis. The face height (total, lower and mid) allows for vertical relationships to be studied. Finally, the mid-face angle, facial convexity, nose prominence, and philtrum depth relate to anterior-posterior facial features.

Statistical analysis

The differences in weight, height, and BMI of both genders were estimated by t-test. The analysis of the data was carried

![Normalization of facial shells to natural head posture.](image-url)
Landmarks:

1. Glabella (g)
2. Nasion (n)
3. Endocanthion (en) L/R
4. Exocanthion (ex) L/R
5. Palpebrale superius (ps) L/R
6. Palpebrale inferius (pi) L/R
7. Pronasale (pn)
8. Subnasale (sn)
9. Alare (af) L/R
10. Labiale superius (ls)
11. Labiale inferius (li)
12. Crista philtri (cph) L/R
13. Chelion (ch) L/R
14. Pogonion (pg)

Total = 21 Landmarks

Figure 2 Facial soft tissue landmarks.

out using 95% CIs of the difference in facial parameters were used to examine the magnitude of the differences between the asthmatic and control groups. This was carried out for male and female groups separately as evidence suggests that both gender and asthma prevalence can influence facial growth (Kynyk et al., 2011; Wenzel et al., 1985). Crouse and Laine-Alava (1999) have indicated gender differences on nasal airflow rate and nasal cross-sectional area. Average facial shells were created for the asthmatic and non-asthmatic females and males using a previously validated method (Kau and Richmond, 2010; Zhurov et al., 2010).

Average faces were superimposed on the mid-endocanthion point (men). Differences in morphology were presented using colour maps, with a tolerance level of 0.25 mm to highlight significant topographical facial differences.

Results

A total of 5253 children attended the clinic at 15 years of age. Of this sample, 506 participants were excluded from analysis for the following reasons: not having their facial images recorded at the time of attending the clinic, poor quality facial scans, non Caucasian, and obvious facial dysmorphology. The sample therefore represented a population-sample of 4747 Caucasian children (2514 females and 2233 males), of whom 418 children were reported to have asthma at 7.5 years of age (Henderson et al., 2010).

The means of weight (kg), height (cm), and BMI for males and females of both asthmatic and non-asthmatic are shown (Table 2). In asthmatic females the mean BMI was greater than non-asthmatic males and females as well as asthmatic males. There was no significant difference in BMI between asthmatic and non-asthmatic males.

The summary data for the nine facial parameters used in this study are presented (Table 3). To compare the facial features of asthmatics and non-asthmatics, 95% CIs of the differences in the measured facial parameters were used. When comparing asthmatics with non-asthmatics, there were no statistically significant differences in any of the 9 facial parameters in males. In contrast, three of the nine facial parameters differed in females; nose width, mid-face height, and mid-face angle. Females with an asthma history had on average a 0.4 mm wider nose compared with non-asthmatic females but could be as much as 0.7 mm. The mid-face height of asthmatic females measured from Is-men was on average 0.4 mm shorter than non-asthmatics but could be as much as 0.9 mm. And the mid-face angle of female non-asthmatics was more acute when compared with asthmatics (51.3 degree versus 51.7 degree).

Superimposition of average facial shells of asthmatic and non-asthmatic males showed no morphological differences. Whereas, superimposition of average asthmatic and non-asthmatic females facial shells confirmed the landmark measurements of a wider inter-ala distance. Differences of 0.4–0.5 mm were recorded in the nose width (Figure 3).

Discussion

This study is the first to investigate facial morphology of adolescents suffering from asthma in a large cohort of 15-year-old children using 3D facial imaging. Our findings suggest that there are small differences between the faces of asthmatic and non-asthmatic individuals; this was predominantly for females.

To understand the relevance of the results the underlying mechanisms of facial growth in the context of asthma should be considered. Moss (1997) theorizes that growth of the face occurs as a response to functional needs and is mediated by soft tissue in which the jaws are embedded. In simple terms, the soft tissues grow, and both bone and cartilage react. For example, the orbit grows as a result of growth of the eyes. The cranium increases in size as a result of growth of the brain, which separates the cranial bones at the sutures while new bone passively fills in at these sites (Moss, 1997). Nasal breathing encourages an increase in size of the nasal cavity in all directions with the floor of the nose developing in a downward and forward direction. Therefore the presence of any respiratory problems may affect normal craniofacial growth. Normal craniofacial growth seems to depend on normal physiological nasal breathing (Fricke et al., 1993; Solow et al., 1984; Vig et al., 1981). It has been argued that mouth-breathing in children results from pharyngeal obstruction (Oulis et al., 1994), affecting the position of the craniofacial muscles and the mandible, leading to occlusal and skeletal alterations (Subtelny, 1975).

Suppression of growth secondary to asthmatic conditions has been suggested (Nelson and Drash, 1959; Falliers...
Table 1 Facial soft tissue landmarks (points).

<table>
<thead>
<tr>
<th>Facial Region</th>
<th>Landmark name</th>
<th>Abbr.</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eyes</td>
<td>Endocanthion(R)</td>
<td>En</td>
<td>Inner commissure of the right eye fissure</td>
</tr>
<tr>
<td></td>
<td>Endocanthion(L)</td>
<td>En</td>
<td>Inner commissure of the left eye fissure</td>
</tr>
<tr>
<td></td>
<td>Exocanthion (R)</td>
<td>Ex</td>
<td>Outer commissure of the right eye fissure</td>
</tr>
<tr>
<td></td>
<td>Exocanthion (L)</td>
<td>Ex</td>
<td>Outer commissure of the left eye fissure</td>
</tr>
<tr>
<td></td>
<td>Palpebralle superius (R)</td>
<td>Ps</td>
<td>Superior mid-portion of the free margin of upper Rt eyelid</td>
</tr>
<tr>
<td></td>
<td>Palpebralle superius (L)</td>
<td>Ps</td>
<td>Superior mid-portion of the free margin of upper Lt eyelid</td>
</tr>
<tr>
<td></td>
<td>Palpebralle inferius (R)</td>
<td>Pi</td>
<td>Inferior mid-portion of the free margin of upper Rt eyelid</td>
</tr>
<tr>
<td></td>
<td>Palpebralle inferius (L)</td>
<td>Pi</td>
<td>Inferior mid-portion of the free margin of upper Lt eyelid</td>
</tr>
<tr>
<td>Forehead</td>
<td>Glabella</td>
<td>G</td>
<td>Most prominent midline point between the eyebrows</td>
</tr>
<tr>
<td>Nose</td>
<td>Nasion</td>
<td>N</td>
<td>Deepest point of nasal bridge</td>
</tr>
<tr>
<td></td>
<td>Pronasale</td>
<td>Prn</td>
<td>Most protruded point of the apex nasi, identified in lateral view of the rest position of the head.</td>
</tr>
<tr>
<td></td>
<td>Subnasale</td>
<td>Sn</td>
<td>Mid-point of angle at columnella base where lower border of nose and surface of upper lip meet.</td>
</tr>
<tr>
<td></td>
<td>Alare (R)</td>
<td>Al</td>
<td>Most lateral point on right alar contour.</td>
</tr>
<tr>
<td></td>
<td>Alare (L)</td>
<td>Al</td>
<td>Most lateral point on left alar contour.</td>
</tr>
<tr>
<td>Lips and Mouth</td>
<td>Labiale superius</td>
<td>Ls</td>
<td>Mid-point of the upper vermillion line</td>
</tr>
<tr>
<td></td>
<td>Labiale inferius</td>
<td>Li</td>
<td>Mid-point of the lower vermillion line</td>
</tr>
<tr>
<td></td>
<td>Crista philtri (R)</td>
<td>Cph</td>
<td>Point on right elevated margin of the philtrum just above the vermillion line</td>
</tr>
<tr>
<td></td>
<td>Crista philtri (L)</td>
<td>Cph</td>
<td>Point on left elevated margin of the philtrum just above the vermillion line</td>
</tr>
<tr>
<td></td>
<td>Cheilion (R)</td>
<td>Ch</td>
<td>Point located at right labial commissure.</td>
</tr>
<tr>
<td></td>
<td>Cheilion (L)</td>
<td>Ch</td>
<td>Point located at left labial commissure.</td>
</tr>
<tr>
<td>Chin</td>
<td>Pogonion</td>
<td>Pg</td>
<td>Most anterior mid-point of the chin.</td>
</tr>
</tbody>
</table>

Table 2 Mean values for height, weight and BMI.

<table>
<thead>
<tr>
<th>Facial Parameter</th>
<th>Asthmatic control difference in mean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Male (n = 233)</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>172.39 (7.111)</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>61.87 (10.832)</td>
</tr>
<tr>
<td>BMI</td>
<td>20.76 (3.077)</td>
</tr>
</tbody>
</table>
technique has provided more accurate and precise analysis of facial morphology, than using anthropometry, cephalometry, and photography (Kau et al., 2004, 2005).

Epidemiologic studies of asthma show differences in asthma prevalence and severity related to age and gender. The likelihood of developing asthma is about 10.5 per cent greater in women than men, with a significant increase in the severity of asthma in women after puberty (de Marco et al., 2000; McCallister et al., 2011). This could explain why females showed greater facial morphological
differences between the asthmatics and control groups when compared with males. It should be noted however that although statistical significance was inferred for some facial parameters in the female group, the linear differences were small. Therefore their clinical significance will require further investigation. Researchers continue to explore the potential influence of the female sex hormones, hormonal influences that are associated with both asthma and craniofacial growth, increased bronchial hyper-responsiveness, and altered perception of airflow obstruction (Kynyk et al., 2011).

We found a slightly increased nasal width (al-al) in asthmatic females and might presume that size of nasal airway is related to body size in general, as BMI values of asthmatic females were slightly larger than males in this study. However, previous studies in children and young adults have indicated that BMI has an effect on airflow rate and nasal airway size (Laine-Alava and Minkkinen, 1997; Crouse Uand Laine-Alava MT 1999). Laine-Alava and Minkkinen, 1997 found that the values for airflow rate tended to increase with the increasing BMI, indicating that subjects with larger body size need higher air volumes. Therefore, asthmatic females showed an increased nasal cross-sectional area.

The other positive finding was the shorter mid-face height in asthmatic females. The design of the study was observational longitudinal, as such the analysis was facilitated to find association and not test for hypothesis. Therefore, albeit a positive association was found but with asthmatic females with a reduced mid-face height, the clinical and potential statistical significance is likely to be minimal.

We were not able to detect any facial differences in asthmatic and non-asthmatic males. This may be explained by wide facial variation due to individuals reaching different stages in puberty which may mask any underlying condition effect.

Cephalometric investigations on longitudinal samples have identified a pubertal spurt in craniofacial growth that is characterized by wide individual variations in onset, duration, and rate (Ekström, 1982; Hunter, 1966; Nanda, 1955). Generally, puberty starts in females approximately 2 years before males and is shorter in duration. The mean peak height velocity occurs at around the age 12 years in females and 14 years in males. In a 15 year old population most of the facial growth will be completed in females but there would be still be significant growth potential in males. Therefore timing of assessment of the influence of medical conditions may be better conducted between 7 to 10 years of age when there are similar growth rates in males and females (Figure 4) or at 20 years of age or greater when facial growth has significantly reduced.

One of the limitations of the study is that the severity of asthma and the type of medication (i.e. inhaler or oral steroid) was not recorded. However, if these factors influence craniofacial growth and shape, they are likely to have small effects (Doull, 2004; Hauspie et al., 1977; Price

![Figure 4](image-url) Soft and hard tissue velocities in relation to upper and lower face height. Both males and females show similar steady growth velocities (1–1.2 mm/year) from 7 to 11 years of age. Taken from Bhatia SN, Leighton BC A manual of facial growth. Oxford Medical Publications, 1993.
The influence of asthma on face shape

et al., 2002; Russell, 1993). The loss to follow-up for the study group was 34 per cent, which is acceptable for a longitudinal study of this size (Fewtrell et al., 2008). Another limitation is that co-morbidity (e.g. allergic rhinitis) was not considered. However this could be investigated retrospectively in the 15-year-old cohort to address this. Lastly as the study only recorded 3D facial shape at 15 years, there is no indication as to when the differences in facial morphology developed.

Despite these limitations, the results of the study are based on a population cohort of UK children that is broadly representative of the general population. In addition the imaging method is valid, and therefore, the methods are transferrable to other population groups (Kau et al., 2005).

Conclusion

The research method provides a framework for the investigation of medical conditions and environmental factors that can influence child’s health and development using a three-dimensional facial imaging.

The study found;

1. Statistically significant differences found between asthmatic and non-asthmatic females; inter-ala width was 0.4 mm wider and the face height was 0.4 mm smaller in asthmatic females.

2. There were no statistical differences in facial parameters for asthmatic and non-asthmatic males.

3. Three-dimensional facial imaging has sufficient resolution to detect small differences in facial morphologies and can be used to explore genetic and environmental effects on facial morphology.

Acknowledgments

We are extremely grateful to all the families who took part in this study, the midwives for their help in recruiting them, and the whole ALSPAC team, which includes interviewers, computer and laboratory technicians, clerical workers, research scientists, volunteers, managers, receptionists, and nurses.

References

Cecil R L 1940 A textbook of medicine by American authors, 5th ed. W B Saunders, Philadelphia

Fewtrell M S et al. 2008 How much loss to follow-up is acceptable in long-term randomised trials and prospective studies? Archives of Disease in Childhood 93: 458–461

Hunter C J 1966 The correlation of facial growth with body height and skeletal maturation at adolescence. The Angle Orthodontist 36: 44–54

McCallister J W, Kynkj Y A, Mastronarde J G 2011 Asthma, the sex difference. Current Opinion in Pulmonary Medicine 17: 6–11

Nanda R S 1955 The rates of growth of several facial components measured from serial cephalometric roentgenograms. American Journal of Orthodontics 41: 658–673

Russell G 1993 Asthma and growth. Archives of Disease in Childhood 69: 695–698

Schatz M, Camargo C A Jr 2003 The relationship of sex to asthma prevalence, health care utilization, and medications in a large managed care organization. Annals of Allergy, Asthma & Immunology 91: 553–558

