Supplemental Figure 1. Eplerenone inhibits cardiomyocyte hypertrophy induced by low doses of aldosterone. H9C2 cardiomyocytes were treated with aldosterone (10 nM or 100 nM) with or without eplerenone (100 µM) for 72 hours. Cell volumes were measured by flow cytometry and are presented as percent volume change relative to the control cells. Data represent the mean ± SD from 3-4 independent experiments. *P < 0.05, **P < 0.01 vs. controls cells or cells treated with both aldosterone and eplerenone.
Supplemental Figure 2. Role for GR in aldosterone-induced cardiomyocyte hypertrophy. H9C2 cardiomyocytes were stably transfected with control shRNA (Consh) or GR shRNA (GRsh) and treated with or without 1µM aldosterone for 72 hours. Cell volumes were measured by flow cytometry and are presented as percent volume change relative to the control cells. Data represent the mean ± SD from 3 independent experiments. *P < 0.05 vs. controls.
Supplemental Figure 3. Role for GR in the anti-apoptotic effects of aldosterone on cardiomyocytes.

H9C2 cardiomyocytes were stably transfected with control shRNA (Consh) or GR shRNA (GRsh) and treated with TNFα, aldosterone, or both under serum free conditions for 48 hours. Apoptotic cells were determined by DNA content using flow cytometry. Data represent the mean ± SD from 3 independent experiments. *P < 0.05, **P < 0.01 vs. controls.
Supplemental Figure 4. Comparison of gene expression profiles in H9C2 cells cultured in the presence or absence of serum. Global gene expression analysis was performed on RNA isolated from H9C2 cardiomyocytes cultured for 48 hours in the presence or absence of serum. Compared to the level of expression in serum-supplemented cells, a total of 8,855 genes showed higher abundance in serum-deprived cells \((p < 0.01)\), 14,665 genes showed lower abundance in serum-deprived cells \((p < 0.01)\), and 20,480 genes showed similar abundance in serum deprived cells.