SUPPLEMENTAL DATA MATERIALS AND METHODS

Culture of pineal glands

After sacrifice, pineal glands were immediately sampled and dipped in ice cold RPMI 1640 medium without phenol red and complemented with penicillin (100 U/ml), streptomycin (100 µg/ml) and glutamine (2mM), as detailed elsewhere (1). At the laboratory, the culture was pursued using 24-well culture dishes (NunclonTM Surface; VWR International, Fontenay-sous-Bois, France), one organ per well in 500 µL of medium. The culture plates were placed in a MIR-154 incubator (Sanyo; Osaka, Japan)

Melatonin quantification

Melatonin in the culture medium was quantified by High Performance Liquid Chromatography (HPLC) using either (1) a 100 x 4.6 mm C8 reversed-phase analytic column (Waters Spherisorb; Milford, MA) with particles length of 3 μm and an Agilent fluorescence detector (1100 series; Santa Clara, CA, USA) or (2) a 125 x 4.6 mm C18(2) reversed-phase analytic column (Luna, Phenomenex; Le Pecq, France) with particles length of 5µm and a Dionex™ ULTIMATE™ 3100 fluorescence detector (Thermo Scientifique™, Villebon-sur-Yvette, FR). The excitation and emission wavelengths were of 280 nm and 340nm, respectively. The mobile phase consisted of 0.1 M Na₂HPO₄ containing 10% (C8 column) or 20% (C-18 column) acetonitrile; pH was adjusted at 6.5 with orthophosphoric acid. The flow was from 1 (protocol 1) to 1.5 ml/min (protocol 2), (for more details on the HPLC procedures see (2)). Quantifications were occasionally performed using a commercially available Enzyme-Linked Immuno-Sorbent Assay (ELISA) according to the manufacturer’s instructions. All the assays used gave similar results.

RNA extraction and cDNA synthesis

After sampling tissues and organs were placed in RNA later®, for 24 h at +4 °C and then stored at -80 °C until they were processed. Total RNA was extracted using the TRIZol® reagent according to the manufacturer's recommendations and treated with DNase Ambion DNA-free™. Total RNA was quantified (NanoDrop® 2000 Spectrophotometer; Thermo scientific, Waltham, MA) and
integrity was checked by electrophoresis and wavelength ratio. Reverse transcription was performed using the PrimeScript™ reverse transcriptase. The quality of cDNA was checked by polymerase chain reaction (PCR) amplification using β-actin degenerated primers (Table 1).

Reverse transcription (RT)-PCR and cloning of TRPV1 and TRPV4

The PCR reaction was performed using the GoTaq polymerase and the following conditions: initialization at 94 °C (2 min) followed by 10 cycles of denaturation (94 °C, 30 sec), annealing (55.3 °C, 30 sec) and extension (72 °C, 1.5 min), and by another 30 cycles of: denaturation (94 °C, 30 s), annealing (53.3 °C, 30 s) and extension (72 °C, 1.5 min). For the generation of full-length cDNA sequences, 3’ and 5’ RACE (Rapid Amplification of cDNA Ends) PCR was performed using the SMART RACE cDNA amplification kit. TRPV1 and TRPV4 3’ extremities were obtained using trout specific primers (Table 1). The RACE-PCR and nested-RACE-PCR steps were: initialization (95 °C, 1 min) followed by 10 cycles of denaturation (95 °C, 30 sec), annealing (69.5 °C and 63.3 °C for TRPV1 and TRPV4 respectively, 1 min) and elongation (68 °C, 3 min), and 30 cycles of denaturation (95 °C, 30 sec), annealing (67.5 °C and 61.3 °C for TRPV1 and TRPV4 respectively, 1 min) and extension (68 °C, 3 min) 30 times. Amplification was performed with Taq Advantage polymerase-2.

After migration on a 1% agarose gel, PCR products were extracted and purified using a gel extraction kit and sub-cloned into a pGEM-T Easy vector to be transfected into DH5α electro-competent bacteria. After selection of the positive clones, the vectors were extracted and purified using minipreps according to the manufacturer’s instructions for sequencing of the amplicons by Eurofins (Ebersberg, Germany).

Real time quantitative (q)PCR

Real-time qPCR was performed using a 1:50 cDNA dilution (n = 5) for the detection in different tissues, and a 1:5 cDNA dilution (n = 23-36) for the detection in pineal glands after the in vitro culture. The specificity of TRPV1 and TRPV4 probes produced (Table 1) was checked by PCR (see above). The qPCR analyses were performed using a Light-Cycler™ system version 2.0 and the LightCycler-FastStart DNA Master SYBR-Green I™ Mix (Roche Diagnostics, Meylan, France). The qPCR conditions were as follows: enzyme activation at 95 °C for 3 min followed by 40 cycles of denaturation (95 °C, 30 sec), annealing (60 °C, 45 sec) and elongation (72 °C, 45 sec), ending with a
melting curve program (consisting in a stepwise of denaturation at 95°C for 15 sec, followed by a
cooling into annealing temperature, 60°C for 1 min, ending on a rise of 0.3°C from 60 to 95°C in 15
sec). The elongation factor 1 alpha (EF1α) was used to normalize the results as already validated in
rainbow trout (3). The relative expression of TRPV1 and TRPV4 was quantified according to the
Pfaffl method (4) based on the real-time qPCR efficiencies for each gene.

Sequences analysis, Statistics and drawings

The Basic Local Alignment Search Tool (BLAST) at NCBI (5) was used to search the data
bases for significant alignments. The search for conserved domains was performed using InterProScan
v5 (6). Transmembrane domains were determined using Phobius (http://phobius.sbc.su.se/).

Compounds and chemicals

Capsaicin, capsazepine, dimethylsulfoxide (DMSO), gadolinium, glutamine, 4-α-phorbol-
12,13-didecanoate (4αPDD), ruthenium red (RuR), streptomycin were from Sigma-Aldrich (Saint-
Quentin Fallavier, France). Stock solutions were dissolved in 100% ethanol for capsaicin, 100%
methanol for capsazepine, distilled water for gadolinium chloride and in DMSO for 4αPDD. Solvent
concentration did not exceed 0.2%; controls contained an equivalent amount of solvent. The melatonin
ELISA kit was from IBL International Gmbh (Hamburg, Germany). RNA later®, TRIzol®, and DNase
Ambion DNA-free™ reagent were from Life technologies SAS (Saint Aubin, France). The
PrimeScript™ reverse transcriptase and the Taq Advantage polymerase-2 were from Ozyme (Saint
Quentin en Yvelines, France). The GoTaq polymerase and the pGEM-T Easy vector were from
Promega (Charbonnières, France). The SMART RACE cDNA amplification kit was from ClonTech
(Saint-Germain-en-Laye, France). The gel extraction and mini-prep kits were from QIAGEN Sciences
(Courtaboeuf, France).
SUPPLEMENTAL TABLE 1

Primers list

<table>
<thead>
<tr>
<th>primer</th>
<th>sequence</th>
<th>Length (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT-PCR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRPV1d1-F*</td>
<td>ATCAAGAGGCTTGTYYGAGGC</td>
<td>879</td>
</tr>
<tr>
<td>TRPV1d1-R*</td>
<td>GGCAGATTAGGAATSTCAGCT</td>
<td></td>
</tr>
<tr>
<td>TRPV1d2-F</td>
<td>GCAGTGASATTCAAATGC</td>
<td></td>
</tr>
<tr>
<td>TRPV1d2-R</td>
<td>ACYTTCCTCCACWCTGAAGCA</td>
<td>1156</td>
</tr>
<tr>
<td>TRPV4d1-F</td>
<td>GGVCQCTTCTTCACAGCAG</td>
<td></td>
</tr>
<tr>
<td>TRPV4d1-R</td>
<td>CCACCCCTGAAGACCACCSC</td>
<td>1528</td>
</tr>
<tr>
<td>β-actin-F</td>
<td>CTGGAGAAAGAGCTAYGAGCTG</td>
<td></td>
</tr>
<tr>
<td>β-actin-R</td>
<td>GTACATGGGTGTTACCDCCAGA</td>
<td>212</td>
</tr>
<tr>
<td>RACE-PCR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRPV1om-3’</td>
<td>AGGACCTGGGGACCAGGGCTGGAGA</td>
<td>604</td>
</tr>
<tr>
<td>TRPV4om-3’</td>
<td>GCCAGGTGTCAAAGGAGCAAGAGAAG</td>
<td>606</td>
</tr>
<tr>
<td>TRPV4om-3’</td>
<td>GGGGAGATGGTGACAGTGGGAAAGA</td>
<td>699</td>
</tr>
<tr>
<td>qPCR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRPV1om-F</td>
<td>CGTCCTGCTGAAGGCTCTA</td>
<td></td>
</tr>
<tr>
<td>TRPV1om-R</td>
<td>TGTCTGTGTATGCAGCATTCTACTA</td>
<td>121</td>
</tr>
<tr>
<td>TRPV4om-F</td>
<td>GAGAATCCATGAGATGC</td>
<td></td>
</tr>
<tr>
<td>TRPV4om-R</td>
<td>TGGGATGGGCGGTAGTA</td>
<td>155</td>
</tr>
<tr>
<td>EF1αom-F</td>
<td>AGCGCAATCAGCCTGAGAGGTGA</td>
<td></td>
</tr>
<tr>
<td>EF1αom-R</td>
<td>GCTGGACAAGCTGAAGGGCTGAG</td>
<td>299</td>
</tr>
<tr>
<td>in situ Hybridization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRPV4omHIS3-F</td>
<td>ACTCTGTTCAAACCTGACACATCGG</td>
<td>700</td>
</tr>
<tr>
<td>TRPV4omHIS3-R</td>
<td>TCATGCGACAGAGTTTTGTGC</td>
<td></td>
</tr>
</tbody>
</table>

*The design of the TRPV1 primers was based on the alignment (ClustalW, BioEdit) of zebra fish *Danio rerio* (EU423314.1) and salmon *Salmo salar* (NM_001140498.1) cDNA sequences. The design of TRPV4 primers was based on nucleotide BLAST alignments of TRPV4 sequences from *Dicentrarchus labrax* (7), *D. rerio* (BC163540.1), *Canis lupus* (NM_001127315), *Mus musculus* (NM_022017.3) and *Homo sapiens* (BC117426.1). *The TRPV1 primers for making the in situ hybridization probe were TRPV1d1-F and TRPV1d1-R (above).
References

TRPV1

R norvegicus
MEQRASLDSEESSRQPPGNSLCLPDRDENCFFPKFYKWHFTTSTSFTRFLPGKSGDEASEAP 60
O mykiss
---------MKSKKGPEYPSFSLDTDDTDDERQAG-SQYVKIPDLVYSLAGLSGSGPKAP 51
S salar
---------MKSKKPPEYPSFSLDTDDTDDERQAG-SQVVKIPDLVYSLAGLSGSGPKTP 51
P nyererei
---------MKSK---ENFGFLETLDTTDEERSS-QRTMKT-DGLLAL---SPFDPFPTK 44
D rerio
---------MKSDMSVSFFLSLTDDQTEEEMTR-AQMKMR---------SSVSKPQFLGTD 39

O mykiss
\[\text{LDCYPYEERLQSSLRNLQGFQGQKQQQQ} \]
S salar
\[\text{LDCYPYEERLQSSLRNLQGFQGQKQQQQ} \]
P nyererei
\[\text{LDCYPYEERLQSSLRNLQGFQGQKQQQQ} \]
D rerio

R norvegicus
\[\text{LDCPYEEGGLASCPIITVSSVTLRPGDGPASVRPSSQDSVSAGEKPPRLYDRRSIFDA} 120\]
O mykiss
\[\text{MDSDYQDELEEAAPKIRFN--LYFDT--------ERTCMLKALLNLQGQNTTII} \]
S salar
\[\text{MDSDYQDELEEAAPKIRFN--LYFDT--------ERTCMLKALLNLQGQNTTII} \]
P nyererei
\[\text{MDSDYQDELEEAAPKIRFN--LYFDT--------ERTCMLKALLNLQGQNTTII} \]
D rerio

R norvegicus
\[\text{VAQSNCQELESLLPFLQRSKKRLTDSEFKDPETGKTCLLKAMLNLHNGQNDTALLLDVA} 180\]
O mykiss
\[\text{VSTGDVMKLEGLHQYLHQSMKKLSNTEYQS--YGKNVLLKALLNLQGQNTTII} \]
S salar
\[\text{VSTGDVMKLEGLHQYLHQSMKKLSNTEYQS--YGKNVLLKALLNLQGQNTTII} \]
P nyererei
\[\text{VSTGDVMKLEGLHQYLHQSMKKLSNTEYQS--YGKNVLLKALLNLQGQNTTII} \]
D rerio

R norvegicus
\[\text{RKTDSLKQFVNASYTDSYYKGQTALHIAIERRNMTLVTLLVENGADVQAAANGDFF} 240\]
O mykiss
\[\text{EKMGDINELVNAAYTDSYYKGQTALHIAIERRSTVFLVILKANAHACKQFQFD} 219\]
S salar
\[\text{EKMGDINELVNAAYTDSYYKGQTALHIAIERRSTVFLVILKANAHACKQFQFD} 218\]
P nyererei
\[\text{EKMGDINELVNAAYTDSYYKGQTALHIAIERRSTVFLVILKANAHACKQFQFD} 211\]
D rerio

R norvegicus
\[\text{GRPGFYFGELPLSLAACTNQLAIVKFLLQNSWQPADISARDSVGNTVLHALVEVAD} 300\]
O mykiss
\[\text{GSMPFYFGELPLSLAACTNQLAIVKFLLQNSWQPADISARDSVGNTVLHALVEVAD} 278\]
S salar
\[\text{GSMPFYFGELPLSLAACTNQLAIVKFLLQNSWQPADISARDSVGNTVLHALVEVAD} 277\]
P nyererei
\[\text{GSMPFYFGELPLSLAACTNQLAIVKFLLQNSWQPADISARDSVGNTVLHALVEVAD} 270\]
D rerio
TRPV4

O. latipes
MNEGRSALLRCHLAFSRTDLGAG--SAASEDCEQDGAQAEGAAFP--LSELSQLE 57

X. maculatus
MNEGRSALLRCHLADSRTDLGAG--SAASEDCEQDGAQAEGAAFP--LSEFSHELFE 56

O. nitolicus
MNEGRS1FKRLHLASKALAE----SPISVGLDSEAQPEDGAGP--LSEFSHELFE 47

P. rubipres
MNEPRSGLLRRSHIAVSDKLTLSDSCSQAFAHASANGRTAQEBGDAAFP--LSEFSHELFE 45

O. mykiss
MTSSLDPLAVTKAAL---------SSESGGQGEGGPEGSWPAEDSTYSLDLANLFE 38

D. rerio
MTEASLDPLAVTKAAL---------SSESGGQGEGGPEGSWPAEDSTYSLDLANLFE 38

X. maculatus
MNEGRSALLRCHLAFSRTDLGAG--SAASEDCEQDGAQAEGAAFP--LSELSQLE 57

O. nitolicus
MNEGRS1FKRLHLASKALAE----SPISVGLDSEAQPEDGAGP--LSEFSHELFE 56

P. rubipres
MNEPRSGLLRRSHIAVSDKLTLSDSCSQAFAHASANGRTAQEBGDAAFP--LSEFSHELFE 56

O. mykiss
MTSSLDPLAVTKAAL---------SSESGGQGEGGPEGSWPAEDSTYSLDLANLFE 38

D. rerio
MTEASLDPLAVTKAAL---------SSESGGQGEGGPEGSWPAEDSTYSLDLANLFE 38

O. latipes
SEDGSQSAQDTSQESALELVQPGN----PADSRQNLRTKFQGAFRKGISHPMDLFEATIY 113

X. maculatus
SEDGSQSAQDTSQESALELVQPGN----PADSRQNLRTKFQGAFRKGISHPMDLFEATIY 113

O. nitolicus
SQDGSPATQDSSQESILEPAQPGVQPSQPSRQNLRMKFHGAFKKGISNPMDLLESTIY 112

P. rubipres
SEDASPSAQGASO----EPAPPGQ----PPDSRQNLRMKFHGAFKKGISNPMDLLESTIY 111

O. mykiss
SEEGSGBTDLPDAPQANLRFQG---LQPDQSGGQGAEFPGPMLPMDLLESTIY 110

D. rerio
NDDVSQPT--------HELPRPGQ----QNDQKQNMRIRFPGPFKKGVPNPMDLLESDYT 86

O. latipes
ESNVVPAPKKAPMDSLFDYGTYGNSSNQKK-RRKKLPRGKTEA--SCDI---VPNPDPPK 167

X. maculatus
ESNVVPAPKKAPMDSLFDYGTYGNSSNQKK-RRKKLPRGKTEA--SCDI---VPNPDPPK 167

O. nitolicus
ESNVVPAPKKAPMDSLFDYGTYGNSSNQKK-RRKKLPRGKTEA--SCDI---VPNPDPPK 167

P. rubipres
ESNVVPAPKKAPMDSLFDYGTYGNSSNQKK-RRKKLPRGKTEA--SCDI---VPNPDPPK 167

O. mykiss
ESNVVPAPKKAPMDSLFDYGTYGNSSNQKK-RRKKLPRGKTEA--SCDI---VPNPDPPK 167

D. rerio
ESNVVPAPKKAPMDSLFDYGTYGNSSNQKK-RRKKLPRGKTEA--SCDI---VPNPDPPK 167

O. latipes
GRNNTIPLLVDIAEKTGNLREFINTPFRDVYYRGQTALHIAIERRCKHYVELLMEKGADV 287

X. maculatus
GRNNTIPLLVDIAEKTGNLREFINTPFRDVYYRGQTALHIAIERRCKHYVELLMEKGADV 287

O. nitolicus
GQNVTIPLLVDIAEKTGNLREFINTPFRDVYYRGQTALHIAIERRCKHYVELLMEKGADV 287

P. rubipres
GQNVTIPLLVDIAEKTGNLREFINTPFRDVYYRGQTALHIAIERRCKHYVELLMEKGADV 287

O. mykiss
GQNVTIPLLVDIAEKTGNLREFINTPFRDVYYRGQTALHIAIERRCKHYVELLMEKGADV 287

D. rerio
GQNVTIPLLVDIAEKTGNLREFINTPFRDVYYRGQTALHIAIERRCKHYVELLMEKGADV 287

O. latipes
HAQARGRFFEPKDEGGYFYFGELPLSLAACTNQPNIVNLTYRTENPHKKADLRRQDSRGNTAV 467

X. maculatus
HAQARGRFFEPKDEGGYFYFGELPLSLAACTNQPNIVNLTYRTENPHKKADLRRQDSRGNTAV 467

O. nitolicus
HAQARGRFFEPKDEGGYFYFGELPLSLAACTNQPNIVNLTYRTENPHKKADLRRQDSRGNTAV 467

P. rubipres
HAQARGRFFEPKDEGGYFYFGELPLSLAACTNQPNIVNLTYRTENPHKKADLRRQDSRGNTAV 467

O. mykiss
HAQARGRFFEPKDEGGYFYFGELPLSLAACTNQPNIVNLTYRTENPHKKADLRRQDSRGNTAV 467

D. rerio
HAQARGRFFEPKDEGGYFYFGELPLSLAACTNQPNIVNLTYRTENPHKKADLRRQDSRGNTAV 467

O. latipes
LHALVHIANDTNDRFRTLKMDDLLIKICTKLYPECNLKMAANIGTIPLMMAAKLKGIG 407

X. maculatus
LHALVHIANDTNDRFRTLKMDDLLIKICTKLYPECNLKMAANIGTIPLMMAAKLKGIG 407

O. nitolicus
LHALVHIANDTNDRFRTLKMDDLLIKICTKLYPECNLKMAANIGTIPLMMAAKLKGIG 407

P. rubipres
LHALVHIANDTNDRFRTLKMDDLLIKICTKLYPECNLKMAANIGTIPLMMAAKLKGIG 407

O. mykiss
LHALVHIANDTNDRFRTLKMDDLLIKICTKLYPECNLKMAANIGTIPLMMAAKLKGIG 407

D. rerio
LHALVHIANDTNDRFRTLKMDDLLIKICTKLYPECNLKMAANIGTIPLMMAAKLKGIG 407

O. latipes
VFQHIIRREIKEDEVRHLSRKFDMAYGVPYSSLYDLSSLTCEGPEVSLILVYNYSNRE 467

X. maculatus
VFQHIIRREIKEDEVRHLSRKFDMAYGVPYSSLYDLSSLTCEGPEVSLILVYNYSNRE 467

O. nitolicus
IFQHIIRREIKEDEVRHLSRKFDMAYGVPYSSLYDLSSLTCEGPEVSLILVYNYSNRE 466

P. rubipres
IFQHIIRREIKEDEVRHLSRKFDMAYGVPYSSLYDLSSLTCEGPEVSLILVYNYSNRE 466

O. mykiss
IFQHIIRREIKEDEVRHLSRKFDMAYGVPYSSLYDLSSLTCEGPEVSLILVYNYSNRE 466

D. rerio
IFQHIIRREIKEDEVRHLSRKFDMAYGVPYSSLYDLSSLTCEGPEVSLILVYNYSNRE 466
<table>
<thead>
<tr>
<th>Species</th>
<th>Initial Sequence</th>
<th>Length</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>O. latipes</td>
<td>NCHEMLAVEPINELLRAKWKQFAAVTFYISVVSYLTMIFTLVAYHPT---EGKPPFP</td>
<td>524</td>
<td></td>
</tr>
<tr>
<td>X. maculatus</td>
<td>NRHEMLAVEPINELLRAKWKQFAAVTFYISVVSYLMIIFTLVAYHTLLEEIVGGPPFPY</td>
<td>520</td>
<td></td>
</tr>
<tr>
<td>O. nitolicus</td>
<td>NRHEMLAVEPINELLRAKWKQFAAVTFYISVVSYLTMIFTLVAYHPT---HQKPPFP</td>
<td>523</td>
<td></td>
</tr>
<tr>
<td>P. rubipres</td>
<td>NRHEMLAVEPINELLRAKWKQFAAVTFYISVVSYLTMIFTLVAYHPT---QGKPPFP</td>
<td>522</td>
<td></td>
</tr>
<tr>
<td>O. mykiss</td>
<td>NRHEMLAVEPINELLRAKWKQFAAVTFYISVVSYLVMIFTLVAYHPT---GGKPPFP</td>
<td>521</td>
<td></td>
</tr>
<tr>
<td>D. rerio</td>
<td>NRHEMLAVEPINELLRAKWKQFAAVTFYISVVSYLTVMIIFTLVAYHPT---GGKPPPYA</td>
<td>493</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Species</th>
<th>Initial Sequence</th>
<th>Length</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>O. latipes</td>
<td>YTTSTDYLRMVGEIFTLASGIFFFLTNIKDLFLKKRPGVKSLVMDGSFQLYFTYSLLIT</td>
<td>584</td>
<td></td>
</tr>
<tr>
<td>X. maculatus</td>
<td>YKTSSDYLRLAGEIVTLASAIFFFLTNPKDLFLKKCPGVQKSLVMDGSFQLYFTYSLLIT</td>
<td>583</td>
<td></td>
</tr>
<tr>
<td>O. nitolicus</td>
<td>HTTSSDYLRLAGEIVTLASAIFFFLTNPKDLFLKKCPGVQKSLVMDGSFQLYFTYSLLIV</td>
<td>582</td>
<td></td>
</tr>
<tr>
<td>P. rubipres</td>
<td>YTTSSDYLRLAGEIVTLASAIFFFLTNPKDLFLKKCPGVQKSLVMDGSFQLYFTYSLLIV</td>
<td>581</td>
<td></td>
</tr>
<tr>
<td>O. mykiss</td>
<td>YTTSTDYLRMVGEIFTLASGIFFFLTNIKDLFLKKRPGVKSLVMDGSFQLYFTYSLLIV</td>
<td>580</td>
<td></td>
</tr>
<tr>
<td>D. rerio</td>
<td>YTTSTDYLRMVGEIFTLASGIFFFLTNIKDLFLKKRPGVKSLVMDGSFQLYFTYSLLIVY</td>
<td>579</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Species</th>
<th>Initial Sequence</th>
<th>Length</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>O. latipes</td>
<td>ITAALYLSGIKAYVSVMVFALVLGWMNTLYFTRGLKLTGTYSIMIQKILLKDIFRFLLVY</td>
<td>644</td>
<td></td>
</tr>
<tr>
<td>X. maculatus</td>
<td>VTAALYLSGVKAYVTVMVFALVLGWMNTLYFTRGLKLTGTYSIMIQKILFKDLFRFLLVY</td>
<td>643</td>
<td></td>
</tr>
<tr>
<td>O. nitolicus</td>
<td>VTAALYLSGVKAYVTVMVFALALGWMNTLYFTRGLKLTGTYSIMIQKILFKDLFRFLLYV</td>
<td>642</td>
<td></td>
</tr>
<tr>
<td>P. rubipres</td>
<td>ISAALYLSGVKAYVTVMVFALALGWMNTLYFTRGLKLTGTYSIMIQKILFKDLFRFLLYV</td>
<td>641</td>
<td></td>
</tr>
<tr>
<td>O. mykiss</td>
<td>VTAALYLSGVKAYVTVMVFALGLGWMNTLYFTRGLKLTGTYSIMIQKILFKDLFRFLLYV</td>
<td>640</td>
<td></td>
</tr>
<tr>
<td>D. rerio</td>
<td>GSAALYLSGVKAYVTVMVFALGLGWMNTLYFTRGLKLTGTYSIMIQKILFKDLFRFLLYV</td>
<td>639</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Species</th>
<th>Initial Sequence</th>
<th>Length</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>O. latipes</td>
<td>LLFMIGYASALVSLLTVCPTSGPECEG--GCPTYPKCREPTGFTFLLDLFLKLTIGMDGL</td>
<td>720</td>
<td></td>
</tr>
<tr>
<td>X. maculatus</td>
<td>VLFMIGYASALVSLLPVCPT---ESAK--NSTTY--CRNPDTFSTFLLDLFLKLTIGMDGL</td>
<td>719</td>
<td></td>
</tr>
<tr>
<td>O. nitolicus</td>
<td>VLFMIGYASALVSLLTVCPPPGTVCNG--SCPTYPACRDNNTFSTFLLDLFLKLTIGMDGL</td>
<td>718</td>
<td></td>
</tr>
<tr>
<td>P. rubipres</td>
<td>VLFMIGYASALVSLLTVCPPPGTECDG--GCPTYPKCREPTGFTFLLDLFLKLTIGMDGE</td>
<td>717</td>
<td></td>
</tr>
<tr>
<td>O. mykiss</td>
<td>VLFMIGYASALVSLLTVCPPPGTEC---GKCTYPKCREPTGFTFLLDLFLKLTIGMDGE</td>
<td>716</td>
<td></td>
</tr>
<tr>
<td>D. rerio</td>
<td>VLFMIGYASALVSLLTVCPPPGTEC---GKCTYPKCREPTGFTFLLDLFLKLTIGMDGE</td>
<td>715</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Species</th>
<th>Initial Sequence</th>
<th>Length</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>O. latipes</td>
<td>DIEHSFPVCLRRSFRVGEMVTVGKNLDGTPDRRWCFRDEVNWHNQLNLIINEDGR-</td>
<td>820</td>
<td></td>
</tr>
<tr>
<td>X. maculatus</td>
<td>DIEAHSPVCRLSFRVGENMTVKNKLDGTPDRRWCFRDEVNWHNQLNLIINEDGR-</td>
<td>819</td>
<td></td>
</tr>
<tr>
<td>O. nitolicus</td>
<td>DIEAHSPVCRLSFRVGENMTVKNKLDGTPDRRWCFRDEVNWHNQLNLIINEDGR-</td>
<td>818</td>
<td></td>
</tr>
<tr>
<td>P. rubipres</td>
<td>DIEAHSPVCRLSFRVGENMTVKNKLDGTPDRRWCFRDEVNWHNQLNLIINEDGR-</td>
<td>817</td>
<td></td>
</tr>
<tr>
<td>O. mykiss</td>
<td>DIEAHSPVCRLSFRVGENMTVKNKLDGTPDRRWCFRDEVNWHNQLNLIINEDGR-</td>
<td>816</td>
<td></td>
</tr>
<tr>
<td>D. rerio</td>
<td>DIEAHSPVCRLSFRVGENMTVKNKLDGTPDRRWCFRDEVNWHNQLNLIINEDGR-</td>
<td>815</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Species</th>
<th>Initial Sequence</th>
<th>Length</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>O. latipes</td>
<td>-SDTSQTNG-LRQSVKGLRRDRWTTVVPRVMELEKSPQOHDLVEMEPILTRN-</td>
<td>871</td>
<td></td>
</tr>
<tr>
<td>X. maculatus</td>
<td>-TDTSQQTNG-VQPGVGLRDRWNSTTVPPVPRVELELRSGPGFHDVEMEPILTR-</td>
<td>861</td>
<td></td>
</tr>
<tr>
<td>O. nitolicus</td>
<td>-SETQANG-LQQVRALRDRWNSTTVPRVELELRSGSFSVDLVEEPILSPLPH-</td>
<td>870</td>
<td></td>
</tr>
<tr>
<td>P. rubipres</td>
<td>-NETQCGAT-LQQVRALRDRWNSTTVPRVELELRSGSFSVDLVEEPILSPLPH-</td>
<td>869</td>
<td></td>
</tr>
<tr>
<td>O. mykiss</td>
<td>-NETQCGAT-LQQVRALRDRWNSTTVPRVELELRSGSFSVDLVEEPILSPLPH-</td>
<td>868</td>
<td></td>
</tr>
<tr>
<td>D. rerio</td>
<td>-NETQCGAT-LQQVRALRDRWNSTTVPRVELELRSGSFSVDLVEEPILSPLPH-</td>
<td>867</td>
<td></td>
</tr>
</tbody>
</table>
Supplemental Figure 1.

Alignment of trout TRPV1 and TRPV4 amino acid sequences with the corresponding sequences from other vertebrates.

For both TRPV1 and TRPV4 the domains were determined using InterProScan. The blue lines mark the ankyrin repeat containing domains, with the aa from the ankyrin repeats in red. The dotted line corresponds to the channel domains, with the corresponding transmembrane domains (S1 to S6 from top to bottom) delimited by the red squares. Asterisk: fully conserved residues; column: groups of strongly similar properties; period: groups of weakly similar properties. ClustalW (Supplemental Materials and Methods).

Trout TRPV1 (*Oncorhynchus mykiss*; KJ135121): The sequence was aligned with the corresponding sequences from *Danio rerio* (NP_001119871.1), *Pundamilia nyererei* (XM_005737809.1), *Salmo salar* (NP_001133970.1) and *Rattus norvegicus* (NM_031982.1); the rat sequence was added because it is so far the best characterized sequence among the TRP. Amino acid residues, which roles have been highlighted in the rat are marked in bold and color. **Bold/Pink and arrow**: Y653 of the rat sequence has been unequivocally associated to temperature gating; this residue is conserved in all the fish sequences displayed. **Bold/Dark brown and arrows**: The residues N628 and N652 located between the transmembrane domains 5-6 (*i.e.*, the pore region) mediate temperature sensitivity in the rat; none is conserved in the trout. **Q727 and W752** located in the C-terminal end of the sequence are believed to be important for transmitting the temperature response; in the fish sequences glutamine is replaced by residues with similar properties, while tryptophan is conserved. **Bold/Green and arrows**: Residues E600 and E648 of the rat sequence mediate the acidic activation of the channel; E648 is conserved in salmonids. **Bold/Blue and arrows**: the residues S512 and T550 of the rat sequence are important for the response to capsaicin, only serine has been conserved in the salmonids sequence, none is present in the zebrafish, which does not respond to capsaicin. **Bold/brow/underlined**: The two serine residues (S502 and S800) are two identified phosphorylation sites by phospholipase C (PLC) that might contribute to channel sensitization; both are conserved in salmonids.

For details and references see text.
Trout TRPV4 (*Oncorhynchus mykiss*; KJ135122) sequence is aligned with the sequences from *Danio rerio*: (XM_001042730.1), *Oreochromis niloticus*: (XM_003451734.2), *Xiphophorus maculatus*: (XM_005804073.1), *Takifugu rubripes*: (XM_003974984.1) and the predicted sequence from *Oryzias latipes* (XM_004072398.1).