Fig. S1. Genomic DNA and deduced amino acid sequences of wild type (wt) and TALEN KO *gnrh1* gene. (A) Alignment of genomic DNA sequence of *gnrh1* open reading frame (ORF) region of wt and a *gnrh1* KO line. Underlines indicate left and right TALEN targets. (B) Alignment of deduced amino acid sequence of GnRH1 precursor taken from genomic data of wt and *gnrh1* KO line. Underline indicates a region in which amino acids were mutated. Shaded region indicates GnRH peptide sequence.

Fig. S2. Genomic DNA and deduced amino acid sequences of wt and TALEN KO *lhb* gene. (A) Alignment of genomic DNA sequence of *lhb* ORF region of wt and a *lhb* KO line. Underlines indicate left and right TALEN targets. (B) Alignment of deduced amino acid sequence of LHb from genomic data of wt and *lhb* KO line. Underline indicates a region in which amino acids were mutated.

Fig. S3. Genomic DNA and its deduced amino acid sequences of wt and TALEN KO *fshb* gene. (A) Alignment of genomic DNA sequence of *fshb* ORF region of wt and a *lhb* KO line. (B) Alignment of deduced amino acid sequence of FSHb from genomic data of wt and *fshb* KO line. Underline indicates a region in which amino acids mutated.
A. ORF sequence of $gnrh1$

<table>
<thead>
<tr>
<th></th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>$gnrh1$ wt ORF</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>$gnrh1$ KO 7bp deletion ORF</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>110</th>
<th>120</th>
<th>130</th>
<th>140</th>
</tr>
</thead>
<tbody>
<tr>
<td>$gnrh1$ wt ORF</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>$gnrh1$ KO 7bp deletion ORF</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>TALEN left</td>
<td>.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>150</th>
<th>160</th>
<th>170</th>
<th>180</th>
<th>190</th>
<th>200</th>
<th>210</th>
</tr>
</thead>
<tbody>
<tr>
<td>$gnrh1$ wt ORF</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>$gnrh1$ KO 7bp deletion ORF</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>210</th>
<th>220</th>
<th>230</th>
<th>240</th>
<th>250</th>
<th>260</th>
<th>270</th>
</tr>
</thead>
<tbody>
<tr>
<td>$gnrh1$ wt ORF</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>$gnrh1$ KO 7bp deletion ORF</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>280</th>
<th>290</th>
<th>300</th>
<th>310</th>
<th>320</th>
<th>330</th>
<th>340</th>
</tr>
</thead>
<tbody>
<tr>
<td>$gnrh1$ wt ORF</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>$gnrh1$ KO 7bp deletion ORF</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>350</th>
<th>360</th>
</tr>
</thead>
<tbody>
<tr>
<td>$gnrh1$ wt ORF</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>$gnrh1$ KO 7bp deletion ORF</td>
<td>.</td>
<td>TALEN right</td>
</tr>
</tbody>
</table>

B. deduced peptide sequence of GnRH1

<table>
<thead>
<tr>
<th></th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>$gnrh1$ wt</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>$gnrh1$ 7bp deletion</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>$gnrh1$ wt</td>
<td>.</td>
</tr>
<tr>
<td>$gnrh1$ 7bp deletion</td>
<td>.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>signal peptide</td>
<td>.</td>
</tr>
<tr>
<td>GnRH peptide</td>
<td>.</td>
</tr>
</tbody>
</table>

Fig. S1
Fig. S2

A. ORF sequence of *lhb*

<table>
<thead>
<tr>
<th>Amino Acid Position</th>
<th>wild type ORF</th>
<th>KO 8bp deletion ORF</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Amino Acid Position</th>
<th>wild type ORF</th>
<th>KO 8bp deletion ORF</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>130</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TALEN left

<table>
<thead>
<tr>
<th>Amino Acid Position</th>
<th>wild type ORF</th>
<th>KO 8bp deletion ORF</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td></td>
<td></td>
</tr>
<tr>
<td>170</td>
<td></td>
<td></td>
</tr>
<tr>
<td>180</td>
<td></td>
<td></td>
</tr>
<tr>
<td>190</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>210</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TALEN right

<table>
<thead>
<tr>
<th>Amino Acid Position</th>
<th>wild type ORF</th>
<th>KO 8bp deletion ORF</th>
</tr>
</thead>
<tbody>
<tr>
<td>220</td>
<td></td>
<td></td>
</tr>
<tr>
<td>230</td>
<td></td>
<td></td>
</tr>
<tr>
<td>240</td>
<td></td>
<td></td>
</tr>
<tr>
<td>250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>260</td>
<td></td>
<td></td>
</tr>
<tr>
<td>270</td>
<td></td>
<td></td>
</tr>
<tr>
<td>280</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Amino Acid Position</th>
<th>wild type ORF</th>
<th>KO 8bp deletion ORF</th>
</tr>
</thead>
<tbody>
<tr>
<td>290</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>310</td>
<td></td>
<td></td>
</tr>
<tr>
<td>320</td>
<td></td>
<td></td>
</tr>
<tr>
<td>330</td>
<td></td>
<td></td>
</tr>
<tr>
<td>340</td>
<td></td>
<td></td>
</tr>
<tr>
<td>350</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LHB deduced peptide sequence

<table>
<thead>
<tr>
<th>Amino Acid Position</th>
<th>wild type LHB</th>
<th>KO 8bp deletion LHB</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Amino Acid Position</th>
<th>wild type LHB</th>
<th>KO 8bp deletion LHB</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>130</td>
<td></td>
<td></td>
</tr>
<tr>
<td>140</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LHB deduced peptide sequence

<table>
<thead>
<tr>
<th>Amino Acid Position</th>
<th>wild type LHB</th>
<th>KO 8bp deletion LHB</th>
</tr>
</thead>
<tbody>
<tr>
<td>430</td>
<td></td>
<td></td>
</tr>
<tr>
<td>440</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B. deduced peptide sequence of LHB
Fig. S3

A. ORF sequence of fshb

```
fshb wt ORF
AGCACGCTGTCATGACATGCCATCTGCTGCTGCTGGGCAAGATGTCAGTTTCTGC
fshb KO 2bp deletion ORF
AGCACGCTGTCATGACATGCCATCTGCTGCTGGGCAAGATGTCAGTTTCTGC

TALEN left
AGCACGCTGTCATGACATGCCATCTGCTGCTGGGCAAGATGTCAGTTTCTGC
TALEN right
AGCACGCTGTCATGACATGCCATCTGCTGCTGGGCAAGATGTCAGTTTCTGC
```

```
fshb wt ORF
AGCACGCTGTCATGACATGCCATCTGCTGCTGGGCAAGATGTCAGTTTCTGC
fshb KO 2bp deletion ORF
AGCACGCTGTCATGACATGCCATCTGCTGCTGGGCAAGATGTCAGTTTCTGC

155
AGCACGCTGTCATGACATGCCATCTGCTGCTGGGCAAGATGTCAGTTTCTGC
160
AGCACGCTGTCATGACATGCCATCTGCTGCTGGGCAAGATGTCAGTTTCTGC
170
AGCACGCTGTCATGACATGCCATCTGCTGCTGGGCAAGATGTCAGTTTCTGC
180
AGCACGCTGTCATGACATGCCATCTGCTGCTGGGCAAGATGTCAGTTTCTGC
190
AGCACGCTGTCATGACATGCCATCTGCTGCTGGGCAAGATGTCAGTTTCTGC
200
AGCACGCTGTCATGACATGCCATCTGCTGCTGGGCAAGATGTCAGTTTCTGC
210
AGCACGCTGTCATGACATGCCATCTGCTGCTGGGCAAGATGTCAGTTTCTGC
```

```
fshb wt ORF
GGGAGCGTGCTTGACATGCCATCTGCTGCTGGGCAAGATGTCAGTTTCTGC
fshb KO 2bp deletion ORF
GGGAGCGTGCTTGACATGCCATCTGCTGCTGGGCAAGATGTCAGTTTCTGC

225
GGGAGCGTGCTTGACATGCCATCTGCTGCTGGGCAAGATGTCAGTTTCTGC
230
GGGAGCGTGCTTGACATGCCATCTGCTGCTGGGCAAGATGTCAGTTTCTGC
240
GGGAGCGTGCTTGACATGCCATCTGCTGCTGGGCAAGATGTCAGTTTCTGC
250
GGGAGCGTGCTTGACATGCCATCTGCTGCTGGGCAAGATGTCAGTTTCTGC
260
GGGAGCGTGCTTGACATGCCATCTGCTGCTGGGCAAGATGTCAGTTTCTGC
270
GGGAGCGTGCTTGACATGCCATCTGCTGCTGGGCAAGATGTCAGTTTCTGC
280
GGGAGCGTGCTTGACATGCCATCTGCTGCTGGGCAAGATGTCAGTTTCTGC
```

```
fshb wt ORF
GCTGAGGATGCTGACATGCCATCTGCTGCTGGGCAAGATGTCAGTTTCTGC
fshb KO 2bp deletion ORF
GCTGAGGATGCTGACATGCCATCTGCTGCTGGGCAAGATGTCAGTTTCTGC

325
GCTGAGGATGCTGACATGCCATCTGCTGCTGGGCAAGATGTCAGTTTCTGC
330
GCTGAGGATGCTGACATGCCATCTGCTGCTGGGCAAGATGTCAGTTTCTGC
340
GCTGAGGATGCTGACATGCCATCTGCTGCTGGGCAAGATGTCAGTTTCTGC
350
GCTGAGGATGCTGACATGCCATCTGCTGCTGGGCAAGATGTCAGTTTCTGC
```

```
fshb wt ORF
TTAA
fshb KO 2bp deletion ORF
TTAA
```

B. deduced peptide sequence of FSHb

```
fshb wt ORF
MQLVVMAALVLAVBGQVSFSCHPKNYSPYBSCGISGCVTTTGCRYTEDPNSYEDEHKSKKCS
fshb KO 2bp deletion
MQLVVMAALVLAVBGQVSFSCHPKNYSPYBSCGISGCVTTTGCRYTEDPNSYEDEHKSKKCS

80
MQLVVMAALVLAVBGQVSFSCHPKNYSPYBSCGISGCVTTTGCRYTEDPNSYEDEHKSKKCS
90
MQLVVMAALVLAVBGQVSFSCHPKNYSPYBSCGISGCVTTTGCRYTEDPNSYEDEHKSKKCS
100
MQLVVMAALVLAVBGQVSFSCHPKNYSPYBSCGISGCVTTTGCRYTEDPNSYEDEHKSKKCS
110
MQLVVMAALVLAVBGQVSFSCHPKNYSPYBSCGISGCVTTTGCRYTEDPNSYEDEHKSKKCS
```

```
fshb wt ORF
GDWSYEVKFBSCFVGFKYPVSCECTCNRRTTYCGRLSADMSPSC*
```

```
fshb KO 2bp deletion
MQLVVMAALVLAVBGQVSFSCHPKNYSPYBSCGISGCVTTTGCRYTEDPNSYEDEHKSKKCS*
```
<table>
<thead>
<tr>
<th>Primer name</th>
<th>purpose</th>
<th>sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>rps13 SE</td>
<td>ribosomal protein subunit 13 (rps13)</td>
<td>5’-GTGTTCCACTTTGGCCTCAAGC-3’</td>
</tr>
<tr>
<td>rps13 AS</td>
<td>rps13 qRT PCR</td>
<td>5’-CACCAATTGAGAGGGATGAGAC-3’</td>
</tr>
<tr>
<td>qPCR LHb Fw new</td>
<td>lh b qRT PCR</td>
<td>5’-AGGGTATGTGACTGACGGATCCAC-3’</td>
</tr>
<tr>
<td>qPCR LHb Rv new</td>
<td>lh b qRT PCR</td>
<td>5’-TGCCCTACCAAAGGACCCCTTGATG-3’</td>
</tr>
<tr>
<td>qPCR FSHb Fw new</td>
<td>fshb qRT PCR</td>
<td>5’-TGGAGATCTACAGGCGTCGGTAC-3’</td>
</tr>
<tr>
<td>qPCR FSHb Fw new</td>
<td>fshb qRT PCR</td>
<td>5’-AGCTCTCCACAGGATGCTG-3’</td>
</tr>
</tbody>
</table>

Table S1

The list of primers.