A classification of atrial flutter and regular atrial tachycardia according to electrophysiological mechanisms and anatomical bases

N. Saoudi, F. Cosío, A. Waldo, S. A. Chen, Y. Iesaka, M. Lesh, S. Saksena, J. Salerno and W. Schoels

Background and motives

Current classifications of regular atrial tachycardias have been based exclusively on the ECG. Differentiation between atrial flutter and atrial tachycardia depends on a rate cut-off around 240–250/min and the presence of isoelectric baselines between atrial deflections in atrial tachycardia, but not in atrial flutter[1,2]. However, atrial tachycardia mechanisms, defined by electrophysiological studies and radiofrequency catheter ablation, do not correlate with electrocardiographic (ECG) patterns as defined currently, and a certain amount of confusion is evident in the literature at the time of assigning appropriate terms to specific arrhythmias.

The current ECG classification is obsolete for this purpose, creating the need for a mechanistic classification of atrial tachycardias. Terms and definitions employed were not very important when only electrical cardioversion and/or empirical antiarrhythmic drug therapy were available. Unfortunately, knowledge of the electrophysiological properties of the atrial tachycardia mechanism is still too incomplete to guide antiarrhythmic drug choice, and selective drugs are not available to effectively target each tachycardia mechanism and component. However, radiofrequency ablation offers specific treatment, targeted to the anatomical substrate. To guide the clinical cardiologist and for better communication between electrophysiologists, it has become necessary to clarify the relationship between the traditionally used terms atrial flutter and atrial tachycardia and the underlying mechanism of arrhythmia, including its anatomical bases.

To attain this goal, an Expert Group was appointed jointly by The Working Group of Arrhythmias of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology to draft a proposal for a new classification of atrial tachycardias. The latter is based on electrophysiological findings, in order to match present understanding of mechanisms and therapy of these arrhythmias, and is directed at electrophysiologists as well as clinical cardiologists with interests in arrhythmias. Arrhythmia involving extra-atrial tissue such as atrioventricular node reentry or atrioventricular reciprocating tachycardia will not be included in this classification.

Proposal for a classification

We see this proposal as a bridge between old classifications based on the ECG and present knowledge of mechanisms. In so far as not all atrial tachycardia mechanisms are clearly known, a closed, seemingly complete classification could be deceptive. In this work, we would like to express our vision of atrial flutter and tachycardia as well as the limits of this understanding. Given the rapid development of knowledge and technology it is likely that after publication some of the questions here posed may have been answered. However, an open classification will be able to accommodate new information.

Key Words: Classification, flutter, atrial tachycardia, macroreentrant tachycardia, focal tachycardia, mapping, entrainment.
Two types of atrial tachycardia are relatively well known and can be defined clearly on the bases of their electrophysiological mechanisms:

- Focal atrial tachycardia (due to an automatic, triggered, or microreentrant mechanism).
- Macreentrant atrial tachycardia (including typical atrial flutter and other well characterized macroreentrant circuits in right and left atrium).

Other tachycardias described in the literature cannot always be well classified because of inadequate understanding of mechanism(s). These will be discussed:

- Atypical atrial flutter
- Type II atrial flutter
- Inappropriate sinus tachycardia
- Reentrant sinus tachycardia
- Fibrillatory conduction

It should be understood that the weight of tradition makes difficult a departure from currently used terms. Thus the term flutter will refer to a continuously waving pattern on the ECG, without an isoelectric baseline in at least one lead, whatever the cycle length. Notwithstanding, the presence or absence of an isoelectric baseline contributes little to the underlying mechanism, with the exceptions that will be pointed out. A detailed morphological description of the ECG will be used in each case to help avoid confusion.

Basis for electrophysiological diagnosis

Diagnostic tools

Activation mapping, the response to pacing and knowledge of any anatomical abnormalities, such as surgical scars, are the electrophysiological tools that allow definition of arrhythmia mechanisms[3–9]. In a clinical electrophysiological setting, bipolar recordings with a short inter-electrode distance (≤2 mm) offer sufficient spatial resolution for most mapping, as reentrant circuit size is generally large (several cm in diameter). Distances between mapped sites of 0.5–1.0 cm are the best resolution currently attainable, but this is enough for the diagnosis of most clinical atrial tachycardias.

It is acknowledged that the limitations of atrial mapping as well as tachycardia definition include the inaccessibility of some endocardial atrial recording sites as well as the inability to map the mid-myocardium and epicardium using traditional catheter electrode techniques. Unipolar mapping may add significant information in selected situations. It has also been suggested that a monophasic action potential catheter could help by recording delayed afterdepolarizations from atrial tissues with triggered activity[11].

Electrical activity can often be recorded during the presence of an isoelectric baseline in the ECG during endocardial mapping. This is a significant contribution of mapping to understanding atrial tachycardia mechanisms. Complete endocardial activation mapping can be readily performed in the right atrium. Left atrial mapping requires a transeptal puncture in most cases. Coronary sinus activation mapping only reflects activation of a small portion of the left atrium. Oesophageal electrodes may also be used to determine activation of the posterior left atrium[21]. Because of these limitations the left atrial activation sequence is not well characterized in many atrial tachycardias.

Recent new technologies have provided additional or corroborative data. These are the non-contact mapping system and the electro-anatomical contact mapping system. In the first, a catheter-based multi-electrode array is connected to an amplifier system and a work station to reconstruct more than 3000 simultaneous electrograms. These are displayed as standard electrogram traces, and translated into a 3D graphical representation of the heart chamber in an isochronal or isopotential mode[12,13]. The other system includes a sensor-equipped mapping and ablation catheter, a location pad, a processor and a work station. The location pad itself incorporates three pods mounted on a triangular frame attached to the underside of the fluoroscopy table, and emits a weak electromagnetic field, allowing the catheter sensor to be localized in the electromagnetically coded space[14,15]. Both techniques allow a far better spatial resolution, and have dramatically enhanced mapping precision.

Transient entrainment, studied both in the ECG and with multiple simultaneous intra-atrial recordings, is of help, as a complement to activation mapping, to diagnose reentrant mechanisms[16–19]. Fusion during entrainment will be recognized in the ECG by a partial change in atrial deflections, intermediate between baseline atrial tachycardia morphology and the morphology produced by pacing during sinus rhythm at the same site (Fig. 1). Collision of activation fronts and/or a partial change in the activation sequence detected by multiple simultaneous endocardial recordings, is the surrogate of fusion in the surface ECG[5,6,19,20] (Fig. 2). This can overcome the difficulties of recognizing fusion patterns during entrainment, posed by low voltage of atrial deflections on the ECG and/or QRS complex and T wave overlap.

Drug effects can be helpful in particular situations; however, they are not totally specific in the diagnosis of atrial tachycardia mechanisms[21].

Basic mechanisms of arrhythmia

Arrhythmias have often been classified according to their basic mechanisms. Although not directly relevant to the classification proposed in this paper, this statement certainly accepts the classic definitions of reentry, triggered activity, and automaticity using accepted criteria.

Reentry is usually confirmed by demonstrating initiation and termination of atrial tachycardias with programmed electrical stimulation and by the presence of
manifest or concealed entrainment. It is associated with anatomical or functional regions of block as well as areas of slow conduction\[22–25\]. Enhanced and abnormal automaticity cannot be initiated or terminated with programmed electrical stimulation. Both are usually provokable after administration of intravenous isoproterenol\[26\]. Pacing of enhanced automaticity is followed by post overdrive suppression.

Tachycardia related to triggered activity have been less well defined\[27,28\]. Pacing manoeuvres may result in post overdrive suppression. Tachycardia related to triggered activity have been less well defined\[27,28\]. Pacing manoeuvres may result in post overdrive suppression. Tachycardia related to triggered activity have been less well defined\[27,28\].

Focal atrial tachycardia

Mechanisms

Focal atrial tachycardia is characterized by atrial activation starting rhythmically at a small area (focus) from where it spreads centrifugally\[21,31–34\]. Frequent locations of such foci are the crista terminalis and the pulmonary veins\[35–37\]. When a focus is located high in the crista terminalis, the atrial activation sequence will not be very different from that during sinus rhythm or inappropriate sinus tachycardia. Only sharp changes in rate with minor, but significant changes in origin of activation detected by endocardial mapping permit diagnosis\[37\]. Multiple atrial tachycardia foci have been described, and can be a cause of recurrence after surgical or radiofrequency ablation\[38,39\].

Available information suggests that focal activity can be due to automaticity, triggered activity (after-potentials) or reentry\[23\]. Atrial tachycardia cycle length is usually \(\geq 250\) ms. However, it can be as short as \(\leq 200\) ms. Over a prolonged period of observation (minutes to hours), atrial tachycardia cycle length can exhibit important variations. A progressive rate increase at tachycardia onset (warm up)\[40\] and/or a progressive rate decrease before tachycardia termination (cool down)
are suggestive of an automatic mechanism. Rate can increase during exercise\cite{41,42}. Typically, adrenergic stimulation can accelerate the rate of focal discharge. Relatively small reentry circuits may resemble focal atrial tachycardia, especially if a limited number of endocardial recordings are collected. This point will be further discussed later.

Mapping

Endocardial mapping can trace the origin of activation to a specific area, from where it spreads centrifugally to both atria (Fig. 3). Unipolar recordings will be helpful by showing negative (QS) patterns with sharp initial deflections at the location of the focus. Spread of activation from the focus or origin may not be uniformly radial, as conduction can be directed by anatomical or functional pathways and barriers\cite{43}. There is generally an electrically silent period in atrial cycle length that, in the ECG, is reflected by an isoelectric line between atrial deflections. Intra-cardiac mapping will show significant portions of the cycle length without recorded activity, even when recording from the entire right atrium, left atrium and/or coronary sinus (Fig. 3). However, In the presence of complex intra-atrial conduction disturbances, intra-atrial activation may extend over a large proportion of the cycle length\cite{43}, and conduction spread may follow circular patterns suggestive of macro-reentrant activation.

Even if transient entrainment can occur in some cases, suggesting a reentrant mechanism, constant or progressive fusion\cite{21}, as demonstrated by intermediate wave morphologies on the ECG, cannot be demonstrated. Collision of activation fronts and/or partial activation change during entrainment cannot be demonstrated with multiple endocardial recordings.

ECG pattern

Typically there are discrete P waves at rates 130–240 beats.min\(^{-1}\), but possibly as low as 100 beats.min\(^{-1}\) or as high as 300 beats.min\(^{-1}\). There is a clearly defined isoelectric baseline between P waves in all leads (Fig. 4). P wave morphology will depend on focus location, and it can be used to approximately localize it before electrophysiological study\cite{36}. It has been suggested that the multilead body surface potential recording can also be used to help localize the site of origin of the tachycardia\cite{44}. During electrophysiological study, ventricular pacing may help by removing QRS complexes which are superimposed on atrial activity. Adenosine infusion to provide transient increased
atrioventricular block can be used to obtain a clear view of the P wave, assuming that the tachycardia does not terminate. In the presence of rapid rates and/or intra-atrial conduction disturbances, P waves can be very broad, and there may be no isoelectric baseline (Fig. 5). In these cases, the ECG will show an atrial flutter pattern (continuous undulation without isoelectric baseline).

Figure 4 ECG of a focal left atrial tachycardia. In this example of a 16-year-old girl, focal left atrial tachycardia with a cycle length of 480 ms originates in the lateral wall of the left atrium. P waves are negative in the lateral leads and lead II, but positive in leads III and V1.

Figure 5 Focal atrial tachycardia presenting with an atrial flutter pattern. In this example of atrial tachycardia, the impulse originates in a left atrial focus, but due to the rapid rate of discharge (240 ms) and possible associated intra-atrial conduction disturbances, exhibits an atrial flutter pattern in the 12-lead ECG.
Macroreentrant atrial tachycardia

Mechanisms

The mechanism of macroreentrant atrial tachycardia is reentrant activation around a ‘large’ central obstacle, generally several centimeters in diameter, at least in one of its dimensions. The central obstacle may consist of normal or abnormal structures. The obstacle can be fixed, functional or a combination of each. There is no single point of origin of activation, and atrial tissues outside the circuit are activated from various parts of the circuit. A description of macroreentrant atrial tachycardia mechanisms must be made in relation to atrial anatomy, including a detailed description of the obstacles or boundaries of the circuit and the critical isthmuses that may be targets for therapeutic action.

The rate range of macroreentrant atrial tachycardia cycle length is too wide to be used as a reliable predictor of the mechanism. Typical atrial flutter, the most common macroreentrant atrial tachycardia, usually has a cycle length between 190 and 250 ms, with ≤2% cycle-to-cycle variation[3,45]. However conduction delays within the circuit can prolong the atrial tachycardia cycle length, making it overlap with the classical focal atrial tachycardia range (>400 ms cycle length) (Fig. 6). This is particularly evident in typical atrial flutter recurring after radiofrequency ablation and in atriotomy macroreentrant atrial tachycardia.

Mapping

The reentry circuit includes large portions of the atria, where continuous, reentrant activation can be recorded with detailed mapping. Activation should be recorded continuously throughout the atrial tachycardia cycle length if atrial mapping is complete. Endocardial recordings will often show activation during isoelectric intervals in the ECG (Fig. 6). The concept of early activation is not applicable to any particular site in the circuit. Activation can be continuously mapped, and an ‘earlier’ activation time can always be found for any particular point of the circuit. For illustrative purposes, a particular reference point may be designated as the origin of activation (time 0), but it should be understood that this is always arbitrary[7,8]. Complex surgical procedures, such as the atrial baffle procedure (Mustard, Senning), can render large parts of the atria inaccessible to an exploring electrode catheter, making it impossible to record activation throughout the cycle length.

Lines of block directing activation, either functional, (crista terminalis)[4–6] or fixed (atriotomy, eustachian ridge)[7,8,10] are reflected by recording double potentials (Fig. 7). Double potentials express sequential activation on both sides of the line of block. However, double potentials can also be recorded from areas of local block outside the reentrant circuit. The interpretation of double potentials has to be made in the context of the general activation sequence and the response of the...
potentials to pacing (entrainment)\(^5,6,9,10,46\). Local second-degree block within a composite (≥2 components) electrogram identifies a local dead-end pathway, not essential for tachycardia mechanism (Fig. 8). Multiple component (fractionated) electrograms may be recorded at sites of local conduction disturbances and/or slow conduction\(^47\). Voltage mapping may be useful in post surgical atrial tachycardia and in patients with significant atrial disease. Areas of low or absent local electrogram amplitude in the bipolar mode represent scar or patch material. Knowledge of such areas helps to determine the possible anatomical circuits.

Transient entrainment

Transient entrainment is possible in the vast majority of cases. Some circuits are very unstable and pacing cycle length should be as close as possible to baseline cycle length in these cases.

When fusion is not discernible in the surface ECG, its equivalent, collision of activation fronts and/or localized activation change, can be detected with the use of multiple recordings from sites chosen strategically in relation to the pacing site and reentry circuit 20 (Fig. 9).

A return cycle length equal to (or within 20 ms of) the atrial tachycardia cycle length at the site of pacing identifies a site which is part of the reentrant circuit (Fig. 10). Macroeentry is confirmed if exact return pauses (0–20 ms difference from the baseline cycle length), are recorded from at least two atrial pacing sites, separated by at least 2 cm\(^17,48\). The entrainment cycle length should be of sufficient length to prolong conduction, which would result in a prolonged return cycle length, even when pacing from within the circuit (Fig. 9). On the other hand, a very long entrainment cycle length makes it harder to recognize fusion/endocardial activation change.

The best characterized macroreentrant atrial tachycardias are typical (or isthmus dependant) atrial flutters and atriotomy (or incisional) atrial tachycardia. Left atrial macroreentrant atrial tachycardia are less well known due to the need for transeptal catheterization for left atrial mapping.

Typical atrial flutter

This is the most common type of macroreentrant atrial tachycardia, even in patients who have undergone cardiac surgery with a right atriotomy\(^49\). In typical atrial flutter, activation of the right atrium is reentrant, bounded anteriorly by the tricuspid orifice, and posteriorly by a combination of anatomical obstacles (orifices...
of the superior and inferior vena cava and the eustachian ridge) and functional barriers (the region of the crista terminalis)[3–6,9,10,50]. Transverse block may be fixed in some patients and of a functional nature in others[51,52], and occurs in the region between the venae cavae perhaps due to anisotropy. Double potentials are recorded at multiple levels in the region of the crista terminalis[5,6,9].

The most common direction of activation in the circuit (90% of clinical cases) is in the descent in the case of anterior and lateral walls and in the ascent in the septal and posterior walls of the right atrium. This has been described as counterclockwise reentry, when viewed from a left anterior oblique, fluoroscopic perspective. The opposite direction of activation, descending the septum and ascending the anterior (clockwise reentry) occurs in 10% of clinical cases and characterizes reverse typical atrial flutter (see below).

The superior pivot point is not well defined. Current data suggest that in most cases it includes the right atrial roof anterior to the superior vena cava orifice, including the initial portions of Bachmann’s bundle[53–55]. However, there is information suggesting that in some cases, activation can also cross the superior end of the crista terminalis[56] or even lower along this structure[57]. The inferior pivot point is the area bounded anteriorly by the inferior part of the tricuspid orifice, and posteriorly by the inferior vena cava orifice and its continuation in the eustachian ridge. Double potentials are also recorded along the eustachian ridge[9,10]. This area has been called the inferior vena cava–tricuspid isthmus, sub-eustachian isthmus, inferior isthmus, or simply flutter isthmus. Complete transection or ablation of this isthmus interrupts and prevents typical atrial flutter[7,58–60].

Concealed entrainment (no fusion in the surface ECG) can be produced by pacing the inferior isthmus (Fig. 10), but also areas of the low posterior right atrial wall[5,61]. Localized activation change can be detected by multiple endocardial recordings, even in the absence of
fusion in the surface ECG. A return cycle length after transient entrainment is equal to baseline cycle length (<20 ms difference) when pacing the flutter isthmus, right atrial roof and anterior and septal right atrial walls.

ECG pattern
A characteristic ECG ‘sawtooth’ pattern is present in leads II, III and/or aVF (Figs 1 and 11). This consists of a downsloping segment, followed by a sharper negative deflection, then a sharp positive deflection with a positive ‘overshoot’ leading to the next downsloping plateau. The relative size of each component can vary markedly. Lead V1 often shows a positive deflection, but biphasic or negative deflections can be seen in some cases. Leads I and aVL characteristically show low voltage deflections.

Reverse typical atrial flutter
A reverse direction of rotation (ascending the anterior wall and descending the posterior and septal walls) can occur clinically in the typical atrial flutter circuit in 10% of cases. This is still called typical atrial flutter because the reentry path is the same, even though the direction of activation is reversed. Reverse typical atrial flutter has also been called clockwise atrial flutter, referring to the direction of endocardial activation from a left anterior oblique fluoroscopic perspective. The same anatomical and functional barriers described in typical atrial flutter are detected in reverse typical atrial flutter: double potentials are recorded at multiple levels in between the venae cavae, and the eustachian ridge. As in typical atrial flutter, complete transection of the inferior right atrial isthmus interrupts reverse typical atrial flutter, and prevents its recurrence.

Reverse typical atrial flutter can be induced in the laboratory in about 50% of patients who clinically present with only typical (counterclockwise) atrial flutter. The 9:1 clinical predominance of typical (counterclockwise) atrial flutter may be related to the localization of an area with a low safety factor for conduction in the atrial flutter isthmus, close to the atrial septum.
ECG pattern

Reverse typical atrial flutter can be recognized with a high degree of reliability in the presence of broad, positive deflections in the inferior leads, although morphologies similar to that of typical atrial flutter have been reported. Wide negative deflections in V1 may be the most specific diagnostic sign (Fig. 12). Reverse typical atrial flutter can produce other atypical patterns which need atrial mapping for precise diagnosis of the mechanism (Fig. 13).

Figure 10 A return cycle identical to that of atrial tachycardia identifies a site within the reentrant circuit. End of a pacing run in typical atrial flutter. Recordings along the lateral wall are made by means of a duodecapolar ‘halo’ catheter from top (H17-18) to bottom i.e. the lateral side of the inferior vena cava–tricuspid annulus isthmus (H3-4). Pacing is initiated within the atrial flutter isthmus via the distal bipole of the halo catheter. Other recordings are the septal part of the isthmus via an ablation catheter and the coronary sinus (from proximal (CS9-10) to distal (CS3-4)). Note that all electrograms are accelerated at the rate of pacing whereas the surface ECG shows no discernable fusion. The first cycle following pacing cessation is identical to the atrial flutter cycle length, confirming isthmus dependence of the atrial tachycardia. During entrainment as well as during ongoing flutter, the activation is descending in the right atrial wall (arrows). This is a good example of concealed fusion.

Lesion macroreentrant atrial tachycardia

In this macroreentrant atrial tachycardia, the central obstacle of the circuit is an atriotomy scar, a septal prosthetic patch, a suture line, or a line of fixed block secondary to radiofrequency ablation (Fig. 7). Other obstacles may also include anatomical structures located in the vicinity of the scar (superior vena cava/inferior vena cava). Low voltage electrograms characterizing areas of scar and flat bipolar recordings characterizing the prosthetic patch can be observed both during sinus rhythm and during atrial tachycardia. Fixed block is present in the central obstacle and double potentials are recorded at linear scar lines (Fig. 7), similar to those recorded along lines of block in typical atrial flutter.

Very complex and/or multiple reentry circuits can be seen after placement of an intra-atrial baffle (Mustard, Senning), in very dilated right atrium after a Fontan procedure, after Maze surgery, and after endocardial radiofrequency ablation line for atrial fibrillation. After placement of an intra-atrial baffle to treat transposition of the great vessels, it may be impossible to map the entire circuit, due to the complex suture lines and baffles. Entrainment becomes an essential tool in these cases to confirm participation of specific areas in the circuit and to try to locate a suitable isthmus area from which concealed entrainment can be demonstrated. However, fusion can be, and usually is, very difficult to analyse in the ECG because of atypical, low voltage atrial complexes in the ECG, and concealed entrainment can be difficult to assess. Multiple endocardial recordings can help by showing local activation change (surrogate of fusion) during entrainment.
Figure 11 Twelve lead ECG of typical atrial flutter. The negative phase of the atrial flutter wave is well seen in the inferior leads. It is often followed by a positive notch that is synchronous with the positivity in V₁ and then by a slightly descending plateau.

Figure 12 Twelve lead ECG of reversed typical atrial flutter. Agreement is weak regarding the ECG features of reverse right atrial rotation in typical atrial flutter. In the majority of the cases, the atrial flutter waves are described as predominantly positive in the inferior leads and negative in lead V₁.
isthmus can be difficult or impossible in right atrial atriotomy tachycardia because of atrial tachycardia interruption. Isthmus participation in the circuit is often proven by atrial tachycardia interruption with catheter pressure (Fig. 14), and atrial tachycardia interruption and non-inducibility after radiofrequency application in the area[72,81]. A single, wide, fractionated electrogram can be recorded from the lower pivot point of the circuit in the low lateral right atrium, close to the inferior vena cava (Fig. 7), and perhaps also from other isthmuses of the circuit, closer to the tricuspid valve. The line of double potentials or fractionated, low voltage electrograms can also often be recorded in sinus rhythm allowing tentative localization of the scar and the associated anatomical isthmuses.

Typical atrial flutter is often associated with right atrial atriotomy tachycardia[49]. Not uncommonly, ablation of one will unmask the other, and ablation of both circuits will be necessary for clinical success. Detection of this change requires careful attention to the atrial activation sequence and ECG pattern after each radiofrequency application. The recording of multiple simultaneous electrograms, as continuous endocardial references, will facilitate detection of these activation changes.

ECG patterns

The morphology of the atrial complex in the ECG of incisonal macroreentrant atrial tachycardia can range from that which is similar to typical atrial flutter, to that which is characteristic of ‘classical’ atrial tachycardia (Fig. 15). In a patient with a previous atriotomy, any ECG pattern could be due to incisonal macroreentrant atrial tachycardia. Often, more than one atrial tachycardia mechanism can be demonstrated and related to more than one ECG pattern.

Other macroreentrant tachycardias of the right atrium

Some unusual macroreentrant tachycardias appearing either after ablation or pacing in patients with typical flutter have been characterized. ‘Lower loop reentry’ has been the term proposed for counterclockwise reentry around the inferior vena cava where the anterior arm of the circuit is the inferior vena cava–TV isthmus and the posterior arm is the low posterior right atrial wall with conduction across the crista terminalis, making it a variant of typical atrial flutter in which the superior turn around is lower[87]. In other cases, electro-anatomical or conventional mapping shows activation rotating around areas of low voltage electrograms in the right atrial free wall, not due to surgical scars, without inferior vena cava–TV isthmus participation[85]. The ECG in both of these types of tachycardia tend to show negative atrial complexes in the inferior leads. Double wave reentry is another macroreentrant tachycardia in which two wavefronts circulate simultaneously in the same reentrant
Figure 14 Interruption of incisional macroreentrant atrial tachycardia by catheter pressure over the critical isthmus. From top to bottom: lead II and recordings from the high anterior (HA), mid anterior (MA), low anterior (LA), low lateral (LL), low septal (LS), mid septal (MS) and high septal (HS) right atrium. The LL electrogram is obtained with the roving catheter. Positioning the catheter at this site reproducibly interrupted the macroreentrant tachycardia (probably by mechanically induced depolarization). Note that, although late, the local electrogram is slightly advanced at the time of tachycardia interruption without any discernable change in the timing of the other electrograms, further supporting the critical role of this area.

Figure 15 ECG pattern during an incisional macroreentrant atrial tachycardia. In this example, right atrial reentry with a cycle length of 490 ms occurs with the impulse rotating around the atriotomy scar.
To date, it has only been described as using the typical reentrant circuit. It is an unstable rhythm, and generally of brief duration.

Left atrial macroreentrant atrial tachycardia

A stable macroreentrant atrial tachycardia can originate in the left atrium. The clinical incidence is not well known but may be 1/10th that of typical atrial flutter. There is still little information on the anatomical bases of left atrial macroreentry tachycardia, although recent reports have characterized the substrate as showing wide scarred areas with low voltage or absent electrograms. Detailed mapping of these atrial tachycardias is difficult because of the need for transeptal catheterization. However, the diagnosis can be made with reasonable certainty with the help of right atrial, coronary sinus, oesophageal and right pulmonary artery recordings.

In the absence of left atrial mapping through transeptal catheterization, long segments of cycle length may not be covered by recorded electrograms (Fig. 9). Left atrial recordings can be obtained from the coronary sinus, the oesophagus and the pulmonary arteries to help fill these gaps in activation.

Right atrial mapping typically shows non-reentrant activation patterns, clearly different from typical and reversed typical atrial flutter. Early right atrial septal activation relative to other parts of the right atrium could suggest a focal septal origin in some cases when left atrial recordings are not obtained. The activation sequence of the coronary sinus is typically from distal to proximal or from mid coronary sinus to both proximal and distal coronary sinus. Cycle length variation in the right atrium, largely exceeding those of the left atrium, suggest a left atrial origin of the tachycardia.

Local right atrial conduction disturbances, such as inferior right atrial isthmus block and/or transverse block at the crista terminalis can result in activation of...
the anterior and septal right atrium in opposite directions, mimicking reentrant right atrial activation of typical atrial flutter. In these cases the response to pacing (entrainment) will clarify location of the reentrant circuit (Fig. 15). A long local return cycle length after pacing the low anterior, low septal and low isthmus excludes participation of these areas in a reentry circuit. Return cycles will be close to the basic cycle length in the coronary sinus recordings. During entrainment of left atrial macroreentrant atrial tachycardia, it is usually possible to demonstrate partial change of activation or collision of activation fronts in the coronary sinus recordings, that become more marked with shorter pacing cycle length. Significant conduction delays can develop within left atrial macroreentrant circuits at high pacing rates, making the return cycle length progressively longer with shortening of the pacing cycle length. When only right atrial sites are studied, a return cycle length prolongation with a shortening of the entrainment cycle length may falsely suggest overdrive suppression of an automatic focus (Fig. 9). In some cases, several reentrant circuit loops may coexist.

ECG patterns

Left atrial macroreentrant atrial tachycardias can result in ECG patterns of atrial tachycardia (discrete P waves and isoelectric baseline) (Figs 6 and 9), typical atrial flutter (Fig. 16) or atypical atrial flutter with usually a predominantly positive F wave morphology in lead V1 (Fig. 17).

The limits of classification

Atypical atrial flutter/tachycardia

With reference to our proposal of typicality, the term atypical atrial flutter should be defined as any tachycardia fulfilling the classical ECG definition of a continuously undulating pattern but not fitting the typical and reverse typical flutter patterns described above. If the flutter/tachycardia is stable enough to have its mechanism elucidated by mapping and entrainment studies, description of the mechanism should be used with or without the term atypical. It should be noted that, as mentioned above, macroreentry in the right atrial circuit responsible for atrial flutter can produce atypical ECG patterns.

However, atypical atrial flutters are often difficult to characterize because rhythm instability may lead to spontaneous or pacing-induced termination, making entrainment impossible. Because circuits may vary in size and locations, new mapping techniques capable of simultaneous acquisition of multiple electrograms should be useful to characterize and ablate these tachycardias.

Type I and type II atrial flutter

Due to the wide acceptance of the original classification of atrial flutter as types I and II by Wells et al., and
the widespread use of the term ‘Type I atrial flutter’ in the literature to designate typical atrial flutter, it is pertinent to refer to it briefly. Most macroreentrant atrial tachycardias and atrial flutters match the description of type I atrial flutter because this classification refers to baseline rate, stable intracardiac electrogram rate and morphology, and to the possibility of transient entrainment.

Type II atrial flutter was defined on the basis of a rapid rate (>350 beats.min⁻¹) and the inability to be entrained. However, there are no further systematic electrophysiological studies of type II atrial flutter, and the mechanism is unknown. In the electrophysiological laboratory and in the postoperative period, it is not unusual to induce a rapid (cycle length ≤180 ms), atypical atrial flutter/tachycardia while trying to interrupt typical atrial flutter by pacing. These atrial tachycardias are often unstable, returning spontaneously to typical atrial flutter, or degenerating into atrial fibrillation. Such tachycardias cannot be entrained, thus fitting the description of type II atrial flutter. Even if entrainment is not demonstrated, activation patterns can be changed by pacing at a very short cycle length, suggesting modification of the mechanism. This tachycardia can show continuous activity and/or fractionated electrograms in selected recording sites in either atrium. This atrial tachycardia is compatible with reentrant mechanisms, such as described by Allessie et al. in a Langendorff preparation in the dog, during acetylcholine infusion. It is possible that this type of tachycardia, fitting the description of type II atrial flutter is only a laboratory artifact, secondary to aggressive pacing. However, recent studies have suggested that type II atrial flutter may drive the atria at short cycle lengths producing fibrillatory conduction and, thereby, an ECG pattern of atrial fibrillation.

Fibrillatory conduction

Multiple endocardial recordings in irregular atrial tachycardias may show relatively organized, regular activation sequences localized to some areas, simultaneous with irregular, changing activation patterns and electrogram fragmentation in others (Fig. 19). The ECG may show irregular activity, suggestive of atrial fibrillation. Only detailed, simultaneous multisite recordings from both atria can show these patterns. This pattern is compatible with local reentry or focal activity, associated with irregular intra-atrial conduction resulting in irregular activation patterns at a distance. Recent animal work suggests that stable local reentry (rotors)
may be a mechanism of stabilization of atrial fibrillation, but there is currently not enough information to know the actual prevalence of these mechanisms in man\cite{97}. A parent arrhythmia is beyond the scope of a classification of atrial flutter and tachycardia as it deals with atrial fibrillation. This is the so-called focal atrial fibrillation during which very high rates bursts of atrial premature complexes, mainly non-sustained and coming from the pulmonary veins, are followed by complete atrial desynchronization that persist after the extinction of the triggering event\cite{98}.

Reentrant sinus tachycardia

Early studies of sinus node function described the response to programmed single extrastimuli. The curve produced by plotting return cycles against the coupling interval could be divided into several phases, including compensatory pause, reset, interpolation and re-entry\cite{99,100}. Sinus node reentrant tachycardia was described on the basis of these findings as a tachycardia that could be induced and terminated by programmed stimulation with P wave morphology identical or similar to spontaneous P waves and cycle lengths of 350–550 ms\cite{101–103}. There are some reports of endocardial ablation of reentrant sinus tachycardia identified by these criteria\cite{104,105}.

However, the precise identification of reentrant sinus tachycardia remains elusive. As indicated above, the mechanism of focal tachycardia can be reentrant, the cycle length completely overlaps that described for sinus node reentrant tachycardia and the location of tachycardia foci is often over the crista terminalis, very close to the supposed location of the sinus node. An added problem is that the origin of the sinus activation can be quite variable according to epicardial mapping studies\cite{106}. Furthermore, endocardial origin of sinus activation during sinus rhythm has not been systematically studied in man, and specific criteria do not exist to pinpoint a specific sinus node area. Finally, reentry strictly limited to the sinus node area has never been demonstrated, and has even been questioned\cite{107}.

Inappropriate sinus tachycardia

Inappropriate sinus tachycardia is a form of focal tachycardia originating in the sinus node at rates above the physiological range, but without an appropriate relationship to metabolic or physiological demands\cite{108,109}. In general, the site of origin of activation changes and moves down along the crista terminalis as a function of changes in autonomic tone, whereas in focal tachycardia it remains fixed. The borderline between inappropriate sinus tachycardia and focal atrial tachycardia originating in the crista terminalis is relatively imprecise. The term postural orthostatic tachycardia syndrome is a form of dysautonomia which is not anatomically based, but can be identified during head upright tilt table testing and improved by fludrocortisone\cite{110}.

Figure 19 Fibrillatory conduction. Regular left atrial tachycardia with fibrillatory conduction to the right atrium. From top bottom, ECG lead II and recordings from the high anterior (HA), low anterior (LA), high septal (HS), mid septal (MS) and low septal (LS) right atrial and proximal (PCS) and distal (DCS) coronary sinus. Note the regular cycle length and activation sequence at proximal (PCS) and distal coronary sinus (DCS) and the changing cycle length and activation sequences in the anterior and septal right atrial recordings. This could be explained by irregular (‘fibrillatory’) conduction to the right atrium of rapid rate activation generated in the left atrium.
Atrial tachycardias are regular atrial rhythms at a constant rate ≥100 beats·min⁻¹ originating outside the sinus node region. The mechanism can be focal or macroreentrant.

Electrocardiographically, flutter refers classically to a pattern of regular tachycardia with rate ≥240 beats·min⁻¹ (cycle length ≤250 ms) lacking an isoelectric baseline between deflections. Neither rate nor lack of isoelectric baseline are specific of any tachycardia mechanism.

Focal atrial tachycardia is characterized by origin of activation from a circumscribed area with centrifugal spread to both atria. It can be due to enhanced automaticity, triggered activity or microreentry (very small reentry circuits).

Inappropriate sinus tachycardia is a form of atrial tachycardia originating along the superior aspect of the crista terminalis (‘the sinus node region’) at rates above the physiological range, but with no relationship to metabolic or physiological demands.

Macroreentrant atrial tachycardia is an atrial tachycardia due to a reentry circuit of large size with fixed and/or functional barriers. These circuits can be entrained during atrial pacing. Well characterized macroreentrant atrial tachycardias include:

Typical atrial flutter
Reverse typical atrial flutter
Lesion macroreentrant tachycardia
Lower loop flutter
Double wave reentry
Right atrial free wall macroreentry without atriotomy
Left atrial macroreentrant tachycardia

Atypical atrial flutter is only a descriptive term for an atrial tachycardia with an ECG pattern of continuous undulation of the atrial complex, different from typical or reverse typical flutter, at a rate ≥240 beats·min⁻¹. If the mechanism can be elucidated, either through conventional mapping and entrainment, or with special multipoint mapping techniques, description of the mechanism should accompany the term atypical flutter, otherwise it should be stated that the mechanism is unknown.

References

