associated with competitive sports in the setting of known cardiovascular disease is a controllable factor, and the devastating impact of even infrequent fatal events in the young athletic population justifies appropriate restriction from competition. It is noteworthy that a 25-year interval was required to generate the Italian data showing the actual success of the current pre-participation screening program. Until data from other athletic populations of comparable size and follow-up are obtained, the Italian studies provide the best available data which strongly support the need for implementing worldwide screening strategies for prevention of SD in the athletes.

References

Domenico Corrado
Department of Cardiology
University of Padua
Medical School
Padua
Italy
E-mail address: domenico.corrado@unipd.it

Antonio Pelliccia
National Institute of Sports Medicine
Rome
Italy

Hans H. Bjørnstad
Hospital Bergen
Norway

Gaetano Thiene
Institute of Pathological Anatomy
University of Padua
Padua
Italy

On behalf of the Study Group on Sports Cardiology of the European Association for Cardiovascular Prevention and Rehabilitation.

doi:10.1093/eurheartj/ehl344

Online publish-ahead-of-print 7 November 2006

Incidence, time course, and predictors of early malignant ventricular arrhythmias after non-ST-segment elevation myocardial infarction in patients with early invasive treatment

We read with great interest the recent article by Rahimi et al.1 The authors investigated malignant ventricular arrhythmias requiring defibrillation (VT/VF) in patients with non-ST-elevation myocardial infarction (NSTEMI) and early percutaneous coronary intervention (PCI) (median delay of PCI was 17.5 h). The incidence of VT/VF was 2.6%, more than two-thirds occurred during the first 12 h, with a higher white blood cells count and hypokalaemia as the only predictors.

What about patients with acute ST-segment elevation myocardial infarction (STEMI) within the scope of VT/VF? Primary PCI was introduced in the therapy of those patients as a 24 h service in our center on 1 October 2000. Since then, we treated almost 700 such patients within the first 12 h after the onset of symptoms.2 According to our experience and results, patients with acute STEMI treated with primary PCI have a higher incidence of sustained ventricular tachycardia and ventricular fibrillation than quoted earlier and most of them occurred within the first 12–24 h. The affected myocardial wall, reperfusion achievement, and pain-to-balloon or door-to-balloon have no statistically significant influence on the appearance of malignant ventricular arrhythmias.3 According to the literature, in patients with acute STEMI and successful primary PCI, the only positivity of cardiac troponin T on admission seems to be associated with a higher incidence of VT/VF.4 Patients with STEMI and VT/VF after reperfusion have a higher mortality rate, but the same frequency of other major adverse cardiovascular events in comparison to those without these arrhythmias.5 This issue is very important because it is still hard to predict these life-threatening arrhythmias in individual patients with myocardial infarction, especially if good reperfusion is achieved. It still remains uncertain, when considering the pathophysiology of these arrhythmias in patients with myocardial infarction, whether these are really caused by reperfusion (coronary intervention, medicamentous, spontaneous) or ischaemia.6 Further investigations should be directed towards discovering predictors of malignant ventricular arrhythmias after reperfusion in both NSTEMI and STEMI, as well as redefining VT/VF as reperfusion arrhythmias according to pathophysiological and clinical criteria. Finally, we agree that the problem of VT/VF in patients with myocardial infarction and mechanically achieved good reperfusion becomes of lesser significance after the first 24 h, which is important from an economic point of view.

References

Vjeren Nkolic-Heitzler
Department of Cardiology
Coronary Care Unit
University hospital Sestre milosrdnice
Vinogradrska 29
I hope that future studies with inclusion of ‘novel’ biomarkers will help us to understand this complex and life-threatening complication.

References

Kazem Rahimi
Clinical Trial Service Unit
University of Oxford
Oxford OX3 7LF
UK
E-mail address:
Kazem.rahimi@cts units.ox.ac.uk
doi:10.1093/eurheartj/ehl346

Online publish-ahead-of-print 26 October 2006

Apical ballooning syndrome, emotional stress and women

In their systematic review, Gianni et al.¹ described clinical characteristics of the transient left-ventricular apical ballooning syndrome or takotsubo cardiomyopathy. They found that the disease onset is preceded by emotional stress in 26.8% and physical stress in 37.8% of cases. However, two largest and most comprehensive studies in western populations strongly have pointed toward the striking female predominance, but also toward the importance of emotional stress as a possible external triggering event, observed in 86 and 100% of cases.²⁻³ In addition, another recent report that has not been included in this review has shown a marked increase in the incidence of apical ballooning syndrome in Niigata, Japan, associated with the earthquake, where 96% of patient were women.⁴

A similar sex discrepancy in triggering, with a greater likelihood of acute episodes of emotional stress preceding onset in women, has been seen for the acute myocardial infarction.⁵ Moreover, probably by representing protracted or re-iterated emotional stress, excess in risk of infarction in both sexes is associated with natural catastrophes or stressful mass events such as earthquakes and war threats (e.g. missile attacks), again more prominently among women.⁶ We have speculated⁷ that men and women respond differently to emotional stress or that there may be sex-specific pathophysiological mechanisms involved in triggering, as those suggested for apical ballooning syndrome.¹⁻³ Furthermore, we have also previously observed a greater association of emotional stress with non-Q-wave than Q-wave myocardial infarction and proposed that transient vasospasm may be an important triggering mechanism associated with an emotional stress.⁸ Multiple vasospasm is one of the mechanisms postulated to underlay apical ballooning syndrome.¹⁻⁴ Gianni et al.⁹ noted several putative explanations for the sex difference in pathophysiology of triggering of apical ballooning syndrome including sex hormones-related influence on the sympathetic neuroendocrine axis and on coronary vasoreactivity, women’s susceptibility to sympathetically mediated myocardial stunning, and postmenopausal alteration of endothelial function. However, further mechanisms may involve a sigmoid interventricular septum or a smaller left-ventricular outflow tract and reduced left-ventricular volumes predominantly found in women. In conclusion, in spite of data from the present review on the more frequent presence of physical stress before the onset of apical ballooning syndrome,¹ there is evidence convincingly suggesting the pivotal role of emotional stress in triggering of this disorder that predominantly affects women. Still, the existence of such a phenomenon should be evaluated by controlled data (such as case-crossover methodology), whereas eventual underlying pathophysiological mechanisms are yet to be fully clarified.

References

