Steyerbery, in fact, disregard the important findings that there are marked variations in the scope of care provided in the in-hospital phase between effective and ineffective DMPs. We, in fact, highlighted that it was not only simply the presence of an in-hospital phase, but also the scope of care involved in it that might determine programme effectiveness.

Nevertheless, we do not believe it would be sensible to use random effect meta-regression to examine the relationships between the 47 identified characteristics of DMPs and programme effectiveness when statistical power is of concern. We had no intention of performing a meta-regression approach to the analysis of the data. Instead, we used systematic comparison. Despite the method being less stringent in controlling statistical bias, it allowed us to take account of precise information about the characteristics of DMPs. More specific process variables, such as participation of cardiologists in direct care, methods of drug titration, and contextual-specific follow-up care, were identified. Findings of such qualitative data for comparison not only provide a platform for defining more appropriate process variables for moderator analysis, but also relate to the complexities of real-life practice. Such rich data, not always easily determined and measured by statistical comparison, should not be deliberately ignored by health care professionals who are interested in heart failure management.

Cost-effectiveness of cardiac resynchronization therapy: results from the CARE-HF trial: reply

We are grateful to the correspondent for his interest in our work. The correspondent questions whether evidence of model fit for the observed survival period will accurately predict the future. Of course, there is uncertainty on the extrapolation survival function, as this goes beyond the trial period. However, the best available evidence for predicting future survival comes from the known survival function during the period of observation. Thus, the model that best describes the data during the observed period will best predict the future survival function. The correspondent questions whether an exponential functional form for the extrapolation of the survival function in CARE-HF is appropriate and suggests instead the use of a Weibull function. We share the correspondent’s view that the Weibull function could theoretically be more appropriate for this task, because it incorporates a shape parameter, which is why we included its use in our analysis plan. However, in the fitted Weibull model for our data, the shape parameter was estimated to be 0.98 (inextricably 1 in the exponential model). The Akaike Information Criterion, which describes the model fit, penalizes the Weibull model for our data, the shape parameter was estimated to be 0.98 (inextricably 1 in the exponential model). The Akaike Information Criterion, which describes the model fit, penalizes the Weibull model because of the additional parameter, making the exponential model preferable, although the application of either model makes no difference to the results of our analysis.

Reference


Reference