strategies. Adiponectin, however, still has the potential to claim an important role in CHD risk assessment. Adiponectin has several anti-inflammatory and anti-atherosclerotic properties that affect the very early stages of atherosclerosis. Consequently, convincing risk prediction for adiponectin in primary CHD prevention was reported for apparently healthy males and patients with type 2 diabetes. Therefore, future interventional studies have to identify high-risk patients for CHD and target circulating adiponectin levels to further elucidate the causal role of adiponectin in atherogenesis.

References
1. Cesari M, Rossi GP. Atherogenic dyslipidemia but not total- and high-molecular weight adiponectin are associated with the prognostic outcome in patients with coronary heart disease. _Eur Heart J_ 2008 (in press)

Maximilian von Eynatten
Department of Nephrology
Klinikum rechts der Isar
Technische Universität München
Ismaningerstr. 22
D-81675 Munich
Germany
Tel: +49 89 4140 6704
Fax: +49 89 4140 4741
Email: maximilian.eynatten@lrz.tum.de

Hermann Brenner
Division of Clinical Epidemiology and Aging Research
German Cancer Research Center
Heidelberg
Germany

Dietrich Rothenbacher
Division of Clinical Epidemiology and Aging Research
German Cancer Research Center
Heidelberg
Germany

doi:10.1093/eurheartj/ehn397
Online publish-ahead-of-print 17 September 2008

Is the finding of the PROFESS study consistent with predictions of network meta-analysis?

The network meta-analysis performed by Thijs et al. found that the use of the combination of aspirin and dipyridamole (ASA + D) is better than thienopyridines or aspirin alone in secondary prevention of vascular events after transient ischaemic attack or stroke. The accompanying editorial suggested that the PROFESS study could be used to assess the validity of these findings. The PROFESS study results are now available and suggest that ASA + D has a similar efficacy to clopidogrel, which was not predicted by the meta-analysis.

A potential weakness of the generalized linear model adopted by Thijs et al. is the assumption of a constant random effect for all treatment comparisons from the same trial, which may be relevant to the findings. This approach is not ideal when there are a large number of multigroup trials. Using the summary data provided by Thijs et al., we address this potential limitation using Bayesian network meta-analysis with appropriate modelling of random effects for multigrouped trials. We found that ASA + D was superior to aspirin alone (as did Thijs et al.) but that there was no statistically significant difference between ASA + D and thienopyridines (Table 1) concordant with the findings from PROFESS.

References

Simon K.H. Lam
Institute of Cardiovascular Science and Medicine
University of Hong Kong
11th Floor, 5-9 Hankow Road, TST
Hong Kong
People’s Republic of China
Tel: +852 6898 2200
Fax: +852 6898 2218
Email: simon.lam@medsci.oxon.org

Andrew Owen
Department of Cardiology
Canterbury Hospital
Canterbury
Kent CT1 3NG
UK

Table 1 Result of Bayesian network meta-analysis of 24 trials with 6830 events from 42 688 patients

<table>
<thead>
<tr>
<th></th>
<th>Placebo</th>
<th>Aspirin</th>
<th>Thienopyridine</th>
<th>Aspirin and dipyridamole</th>
<th>Aspirin and clopidogrel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odds ratio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(95% credible interval)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspirin</td>
<td>0.85 (0.77–0.94)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thienopyridine</td>
<td>0.79 (0.69–0.91)</td>
<td>0.93 (0.84–1.03)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspirin and dipyridamole</td>
<td>0.68 (0.60–0.78)</td>
<td>0.80 (0.71–0.91)</td>
<td>0.86 (0.74–1.01)</td>
<td>0.93 (0.80–1.07)</td>
<td>1.08 (0.88–1.30)</td>
</tr>
<tr>
<td>Aspirin and clopidogrel</td>
<td>0.74 (0.61–0.88)</td>
<td>0.86 (0.74–1.01)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Odds ratio (95% credible interval) for Bayesian network meta-analysis implemented using WinBUGS. Non-informative prior distributions were used, and posterior distributions of treatment effects were constructed from three chains of 30 000 simulations.