The year in cardiology 2014: peripheral circulation

Victor Aboyans1,2*, Marianne Brodmann3, Marco De Carlo4, Denis Clement5, Lucia Mazzolai6, Lucas van Bortel7, and Marc R.H. van Sambeek8
Charalambos Vlachopoulos9, On Behalf the ESC Working Group of Peripheral Circulation

1Department of Cardiology, Dupuytren University Hospital, 2, Martin Luther King Avenue, Limoges 87042, France; 2Inserm 1094, Tropical Neuroepidemiology, University of Limoges, Limoges, France; 3Division of Angiology, Medical University Graz, Graz, Austria; 4Cardiac Catheterization Laboratory, Cardiothoracic and Vascular Department, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy; 5Department of the Dean, Gent University Hospital, Gent, Belgium; 6Division of Angiology, CHUV, Lausanne University Hospital, Lausanne, Switzerland; 7Unit of Clinical Pharmacology, Heymans Institute of Pharmacology, Gent University, Gent, Belgium; 8Department of Vascular Surgery, Catharina Hospital, Eindhoven, The Netherlands; and 9Peripheral Vessels and Hypertension Units, 1st Department Cardiology, Athens Medical School, Athens, Greece

Abstract

In 2014, the debate on the indication of revascularization in case of asymptomatic carotid disease continued, while another one regarding the use of surgery vs. stenting addressed some new issues regarding the long-term cardiac risk of these patients. Renal arteries interventions trials were disappointing, as neither renal denervation nor renal artery stenting was found associated with better blood pressure management or outcome. In contrast, in lower-extremities artery disease, the endovascular techniques represent in 2014 major alternatives to surgery, even in distal arteries, with new insights regarding the interest of drug-eluting balloons. Regarding the aorta, the ESC published its first guidelines document on the entire vessel, emphasizing on the role of every cardiologist for screening abdominal aorta aneurysm during echocardiography. Among vascular wall biomarkers, the aorta stiffness is of increasing interest with new data and meta-analysis confirming its ability to stratify risk, whereas carotid intima-media thickness showed poor performances in terms of reclassifying patients into risk categories beyond risk scores. Regarding the veins, new data suggest the interest of D-dimers and residual venous thrombosis to help the decision of anti-coagulation prolongation or discontinuation after the initial period of treatment for deep vein thrombosis.

Carotid disease

In a systematic review and meta-analysis (56 studies) for the U.S. Preventive Services Task Force,1 the authors concluded a lack of sufficient evidence to establish incremental benefit of carotid endarterectomy (CEA), carotid stenting (CAS), or medical therapy intensification beyond current standard medical therapy, leading to a recommendation against screening for asymptomatic carotid artery stenosis in general population.2 In line with this, a recent analysis of an ongoing trial3 comparing medical therapy alone vs. CEA vs. CAS in asymptomatic carotid stenosis looked for the clinical significance of progression of asymptomatic carotid stenosis. No statistically significant difference in annual stroke rates can be found between the progression- and non-progression groups, underlining the fact that the stenosis degree is not the sole factor of incident stroke. Further criteria are matter of active research, including ultrasound assessment of microembolic signals or cerebral blood flow reserve, identification of high-risk plaque through ultrasound, MRI or positron emission tomography, and the detection of asymptomatic brain damage.4 Against the general trend showing safety in case of asymptomatic carotid stenosis treated with current standards of medical therapy, a recent series reported high rates of early ischaemic neurologic events after ultrasound diagnosis, especially in case of >90% stenosis, in favour of intervention.5 This study suggests that there may be still some place for discussion regarding revascularization of asymptomatic carotid stenosis, mainly because there might be a subgroup of asymptomatic patients with a higher stroke risk, which must be identified by future research.

The preferred strategy to cure carotid stenosis (either asymptomatic or symptomatic) is also still debated. Carotid stenting has become increasingly popular as an alternative to CEA, with less invasiveness, more comfort for the patient and shorter recovery period. Long-term safety and clinical durability of CAS compared with CEA have been established by numerous randomized clinical trials (RCTs), although they differ regarding their reported peri-operative safety. In addition, significant differences in the requested operators’ experience were present. A recent publication of the Carotid Stenting Trialists Collaboration highlighted the significant effect of operator’s experience on outcome.6 In 2014, the Cochrane Stroke Group updated their review and concluded that CAS was associated with a...
higher risk than CEA for death and any stroke within 30 days of treatment. This statement was supported by the results from a National Hospital Discharge Database. Large registries have obtained data (only from expert centres of excellence) on equivalence, or the non-inferiority, of CAS over CEA. The long-term (10 years) results of a single-centre study comparing CAS with CEA with equivalent risk of death (over 50%) and similar risk of ipsilateral stroke for both procedures has been recently reported.

Based on the most updated literature, the 2014 AHA/ASA Guidelines recommended CAS as an alternative to CEA for symptomatic patients at average or low risk for complications, quite similar to the ESC guidelines in 2011. For patients > 70 years, CEA may be associated with improved outcome compared with CAS. Importantly, the trials supporting these guidelines were mainly focused on mortality and stroke. The trial providing 10 years results reported higher long-term risk of myocardial infarction (MI) in case of symptomatic carotid stenosis, especially among patients who underwent CEA, in accordance with several earlier reports showing increased risk of peri-operative MI. It is plausible that the coronary risk should also be entered in the equation for selecting appropriate carotid revascularization modality, but this requires further studies.

Renal arteries

The CORAL trial (Table 1), the largest ever performed to assess the benefits of angioplasty in case of renovascular disease put a definite full stop on the extended use of this technique to hypertension and/or limit renal failure. A meta-analysis adding these new data to those of other six trials (a total of 2139 patients with atherosclerotic renal stenosis) confirmed the lack of improvement in any outcome. At this point, even the analysis of subgroups (e.g. renal function class, hypertension severity, stenosis degree, intra-arterial pressure recovery, etc.) have not identified any benefit of renal angioplasty over medical treatment in any setting. Nonetheless, these data are related to atherosclerotic disease, and renal angioplasty should be discussed in case of fibromuscular dysplasia.

The even more disappointing data came from the multicentre randomized single-blind Simplicity-3 trial (Table 1), comparing renal denervation with a sham procedure, conducted to validate the prior promising results in favour of major benefits to control resistant hypertension (i.e. uncontrolled hypertension with systolic blood pressure > 160 mmHg despite taking > 3 anti-hypertensive drugs at maximally tolerated doses). The lack of efficacy, both in office and ambulatory pressure change, halted the big momentum of ongoing (or planned) trials. New technology, pathophysiology insights, and a better selection of patients are potential keys for future success.

Lower-extremities artery disease

The Global Burden Disease estimated increased LEAD-related death between 1990 and 2010 (Figure 1). In the USA, the incidence of CLI was estimated at 0.35% per year but one half of patients declared CLI without previous diagnosis of LEAD.

Two studies identified elevated cardiac biomarkers as a tool for risk stratification in patients with LEAD, as they were tightly associated with worse prognosis. In patients undergoing endovascular revascularization, pre-procedural cardiac troponin-T (cTnT) levels >0.01 ng/mL were independently associated with 1-year all-cause mortality (HR = 8.1) and amputation (HR = 3.7). In claudicants, high cTnT was associated with increased risk of 7-year all-cause and cardiovascular (CV) death. The clinical relevance of the use of cTnT for risk stratification in LEAD needs further investigation.

The benefits of statins in preventing peripheral outcomes in LEAD patients (− 18% at 4 years) were highlighted in the REACH registry.

A recent meta-analysis confirmed the benefits of exercise training on walking distances. Current research is focused on home-based exercise, with favourable effects in terms of walking distance and vascular function.

In the IRONIC trial (158 patients), quality of life improved in case of revascularization (vs. medical therapy) despite trivial amelioration of total walking distance, reopening the debate of revascularization in claudicants.

Initial studies comparing drug-eluting balloons (DEBs) with percutaneous transluminal angioplasty (PTA) suggested that DEB may reduce restenosis and reintervention rates and improve wound healing/limb preservation in CLI patients. Two RCTs on DEB have been published in this setting in 2014. The LIVI-1 trial randomized 101 Rutherford classes 2–5 femoro-popliteal lesions to Lutonix DEB or PTA, after stratification by intention to stent the lesion. At 6 months, DEB yielded lower late lumen loss (LLL) (Table 1). The IN.PACT-DEEP randomized 358 patients with CLI 2:1 to DEB or PTA. Despite significantly longer lesions and deeper ulcers in the PTA arm, unexpectedly neither the clinically driven target lesion revascularization (TLR) nor the LLL were significantly better in the DEB arm at 1 year (Table 1). While the study met its non-inferiority hypothesis regarding the primary safety endpoint, there was a trend towards increased major amputations (8.8 vs. 3.6%; P = 0.080) in the DEB arm. These results should be interpreted as device-specific and should not preclude further research, which should be systematically associated with standardized wound care.

Most recently, the IN.PACT SFA trial was presented; 331 patients with femoro-popliteal lesions in Rutherford classes 2–4 were randomized 2:1 to DEB or PTA. At 12 months, the DEB group showed better primary patency (Table 1), clinically driven TLR (2.4 vs. 20.6%), and MACE rate (6.3 vs. 24.3%) (P < 0.001 for all), setting DEB as a primary therapy for atherosclerotic lesions of the superficial femoral artery. This is the first trial showing superiority of DEB over PTA based on clinical endpoints. Balloon materials and coating technologies affect substantially the ability of DEB to deliver therapeutic paclitaxel regimens into the vessel wall. This, along with patients and lesions selection may explain the variability of results obtained, requiring therefore further trials to refine the best techniques and indications.

Abdominal aorta aneurysm

The ESC guidelines on the management of the whole aorta were published in 2014. They emphasized on the opportunistic screening of abdominal aorta aneurysm (AAA) during echocardiography in men > 65 years (Class IIa, Level B), based on a French nationwide study reporting a 5.4% prevalence, at the median cost of 1.7 min to screen AAA. These guidelines emphasized on the high level of CV risk in these patients and the importance of prevention and
Table I Summary of major randomized trials or meta-analyses in peripheral intervention in 2014

<table>
<thead>
<tr>
<th>Study</th>
<th>Aim</th>
<th>Type</th>
<th>Challenger</th>
<th>Reference</th>
<th>No. of participants: total (challenger/ comparator)</th>
<th>Setting (indication)</th>
<th>Primary endpoint</th>
<th>Main objective achieved?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carotid arteries</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meta-analysis for the US Preventive Services Task Force<sup>1</sup></td>
<td>To assess benefits of screening and treating CS (asymptomatic)</td>
<td>Meta-analysis</td>
<td>Screening + revasc. if needed</td>
<td>No screening</td>
<td>78 Reports/S6 studies</td>
<td>Population</td>
<td>Stroke or TIA</td>
<td>No sufficient evidence</td>
</tr>
<tr>
<td>Lower-extremities arteries</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN.PACT-DEEP<sup>11</sup></td>
<td>To compare DEB vs. PTA for BTK lesions</td>
<td>Open</td>
<td>DEB</td>
<td>PTA</td>
<td>358 (239/119)</td>
<td>CLI</td>
<td>Efficacy: clinically driven TLR and LLL at 1 year; safety: composite of death, major amputation, and TLR</td>
<td>Efficacy No: TLR 9.2 vs. 13.1% (P = 0.29); LLL 0.61 ± 0.78 mm vs. 0.62 ± 0.78 mm (P = 0.95); safety yes; 17.7 vs. 15.8% (P = 0.02*)</td>
</tr>
<tr>
<td>LEVANT-I<sup>12</sup></td>
<td>Compare DEB vs. PTA in fem-pop lesions</td>
<td>Open</td>
<td>DEB (± stenting)</td>
<td>PTA (± stenting)</td>
<td>101 (49/52)</td>
<td>Rutherford classes 2–5 fem-pop lesions</td>
<td>Late lumen loss at 6 months</td>
<td>Yes: 58% lower LLL (P = 0.016)</td>
</tr>
<tr>
<td>IRONIC<sup>13</sup></td>
<td>Benefits of revascularization on quality of life</td>
<td>Open</td>
<td>Revascularization (surgical or endovascular)</td>
<td>Non-supervised training advice</td>
<td>158 (79/79)</td>
<td>Unselected patients with claudication</td>
<td>Health-related quality of life after 1 year</td>
<td>Yes: improved quality of life (P < 0.01)</td>
</tr>
<tr>
<td>IN.PACT SFA<sup>14</sup></td>
<td>DEB vs. PTA for fem-pop lesions</td>
<td>Open</td>
<td>DEB</td>
<td>PTA</td>
<td>331 (220/111)</td>
<td>Rutherford classes 2–4 fem-pop lesions</td>
<td>Efficacy: primary patency at 1 year; safety: freedom MAE<sup>b</sup></td>
<td>Efficacy yes: primary patency 82.2 vs. 52.4% (P < 0.001); safety yes: MAE<sup>b</sup> 6.3% vs. 24.3% (P < 0.001)</td>
</tr>
<tr>
<td>Abdominal aorta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMPROVE<sup>15</sup></td>
<td>EVAR vs. open surgery in ruptured AAA</td>
<td>Open</td>
<td>EVAR</td>
<td>Open surgery</td>
<td>613 (316/297)</td>
<td>Patients referred for ruptured AAA</td>
<td>30-day mortality</td>
<td>No: 30-day death EVAR: 35.4 vs. 37.4% (surgery), P = 0.62</td>
</tr>
<tr>
<td>Renal arteries</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CORAL<sup>16</sup></td>
<td>Benefits of renal artery stenting in renovascular HTN</td>
<td>Open</td>
<td>Renal artery stenting</td>
<td>Medical therapy</td>
<td>933 (459/472)</td>
<td>Renal artery stenosis with either HTN or CKD</td>
<td>Death, nonfatal MI, stroke, renal function, and hosp. for CHF.</td>
<td>No: HR = 0.94 (P = 0.58)</td>
</tr>
<tr>
<td>SIMPLICITY-3<sup>17</sup></td>
<td>Benefits of renal denervation in resistant HTN</td>
<td>blinded</td>
<td>Denervation (+medical therapy)</td>
<td>Sham (+medical therapy)</td>
<td>535 (364/171)</td>
<td>Resistant HTN (≥160 mmHg with ≥3 drugs)</td>
<td>6-months office SBP change</td>
<td>No: −2.39 mmHg difference (P = 0.25)</td>
</tr>
</tbody>
</table>

AAA, abdominal aorta aneurysm; CS, carotid artery stenosis; DEB, drug-eluting balloon; EVAR, endovascular aortic repair; Fem-pop, femoro-popliteal; HTN, hypertension; LLL, late lumen loss; PTA, percutaneous transluminal angioplasty; SBP, systolic blood pressure; TIA, transient ischaemic attack.

¹For non-inferiority.
^bCombining death, clinically driven TVR, major amputation, and thrombosis.
medical therapy beyond aortic interventions. A post hoc analysis of a Dutch randomized trial comparing surgery vs. endovascular aortic repair (EVAR) for AAA showed a significant reduction of long-term total- (by 50%) and CV mortality (by 60%) in case of preoperative statins, in line with data from a large national database (>20,000 interventions), which showed that >50% of these patients were regrettably not under statins. In turn, anti-coagulation, often necessary for cardiac indications in patients undergoing EVAR, could increase the risk of endoleaks and reintervention, suggesting closer surveillance.

In most centres, patients with AAAs are usually treated endovascular (EVAR), if the anatomy is suitable. The ESC guidelines put at a same level of performance open surgery and endovascular therapy (EVAR). Clinical evidence based on several RCTs indicates that EVAR is associated with superior peri-operative outcomes and similar long-term outcomes if compared with open surgery, although requiring more often re-intervention. Nevertheless, the mortality rates reported in these trials is lower than those in registries, outside the restrictions of RCTs. Since these RCTs, stent-graft technology has been further developed by profile down-sizing, fixation, and sealing optimization, the use of low porosity fabrics, improved imaging techniques and better intervention planning. For these reasons, the ESC Guidelines recommended that the indication for EVAR be decided on an individual basis, according to anatomy, pathology, comorbidity, and anticipated durability.

In the past few years, fenestrated and branched stent-graft systems have increasingly been used to treat anatomically challenging aneurysms. At the same time, chimney techniques have been used to extend landing zones for EVAR. The results of both techniques demonstrate that the procedure can be implemented with a high degree of success. On the other hand, there is concern about the major adverse events, including side-branch patency and endoleak. Ongoing studies and technological refinement of stent grafts will hopefully continue to broaden the utilization of EVAR.

There is clinical equipoise between open surgical repair and EVAR for patients with a ruptured AAA (rAAA). A systematic review and meta-analysis and an RCT comparing treatment strategy showed that EVAR is not inferior to open repair in patients with an rAAA. This supports the use of EVAR in suitable patients and OR as a reasonable alternative.

Vascular wall biomarkers

Peripheral vascular wall biomarkers show great potential in improving risk prediction beyond scores based on risk factors. An abnormal value of a biomarker would imply closer follow-up and earlier or even intensified preventive therapies. In a recent meta-analysis of 17,535 individual data, a 1 SD increase in carotid-femoral pulse wave velocity (cfPWV) increases CV events, CV mortality and total mortality by 20%, respectively. Most importantly, this arterial stiffness biomarker fulfils a stringent criterion for qualification as surrogate clinical endpoint: it improves overall 10-year risk classification for intermediate risk subjects by 13%. In patients with erectile dysfunction, a prognostic marker of generalized arterial disease and CV events, cfPWV improves risk prediction and reclassifies 28% of patients to higher or lower risk category. In contrast, cIMT showed a mediocre improvement (5.6%) in net reclassification index in intermediate risk patients with hypertension, currently tempering the expectations for this biomarker. In an attempt to “map” arterial stiffness along the arterial tree, the Hoorn
study showed that local carotid and femoral arterial stiffness indices predicted, independently from each other and from cPWV, all-cause mortality and CV events. Central (aortic, carotid) pressures are lower than peripheral (brachial) pressures and they may have a better predictive ability. Difference between central and peripheral pressures is higher in younger ages, in males, and with increasing levels of blood glucose, while smoking and dyslipidaemia decrease this difference. In an important step towards clinical implementation, reference values for central pressures were determined in a general healthy population and according to CV risk factors (Figure 2).
Venous thrombosis

In occlusion of the first World Thrombosis Day (13 October 2014), an article by Raskob et al. showed that VT has a similar impact on CV mortality and morbidity as arterial thrombosis. Across a wide range of low, middle, and high income countries, annual VT incidence ranges from 0.75 to 2.69 per 1000 individuals, up to 2–7 per 1000 among those aged >70, which represents a major global disease burden. Its prevention is therefore an important goal in CV prevention. The INSPIRE trial provides evidence of a 40% VT recurrence burden. Its prevention is therefore an important goal in CV prevention.

Ranges from 0.75 to 2.69 per 1000 individuals, up to 2–7 per 1000 across low, middle, and high income countries, annual VT incidence varies from 0.75 to 2.69 per 1000 individuals, up to 2–7 per 1000 among those aged >70, which represents a major global disease burden. Its prevention is therefore an important goal in CV prevention. The INSPIRE trial provides evidence of a 40% VT recurrence burden. Its prevention is therefore an important goal in CV prevention.

Conflict of interest

References

