Targeting prolyl-isomerase Pin1 prevents mitochondrial oxidative stress and vascular dysfunction: insights in patients with diabetes

Francesco Paneni1,2,3†, Sarah Costantino1,2†, Lorenzo Castello4, Rodolfo Battista5, Giuliana Capretti4, Sergio Chiandotto4, Domenico D’Amario6, Giuseppe Scavone7, Angelo Villano6, Alessandra Rustighi8, Filippo Crea6, Dario Pitocco7, Gaetano Lanza6, Massimo Volpe3,4, Giannino Del Sal8, Thomas F. Lüscher1, and Francesco Cosentino1,2*

1Cardiology and Cardiovascular Research, Institute of Physiology and University Hospital, Zürich, Switzerland; 2Cardiology Unit, Department of Medicine, Karolinska University Hospital, Solna, 171 76 Stockholm, Sweden; 3IRCCS Neuromed, Pozzilli, Italy; 4Cardiology, Department of Clinical and Molecular Medicine, University of Rome ‘Sapienza’, Rome, Italy; 5Internal Medicine Unit, Civil Hospital, Sora, Italy; 6Department of Cardiovascular Medicine, Catholic University, Rome, Italy; 7Diabetes Care Unit, Internal Medicine, Catholic University, Rome, Italy; and 8Laboratorio Nazionale CIB, AREA Science Park and Department of Life Sciences, University of Trieste, Trieste, Italy

Received 14 January 2014; revised 12 March 2014; accepted 31 March 2014; online publish-ahead-of-print 6 May 2014

This paper was handled by Stephanie Dimmeler (Prof. Johan-Wolfgang Goethe Universität, dimmeler@em.uni-frankfurt.de).

Aim
Diabetes is a major driver of cardiovascular disease, but the underlying mechanisms remain elusive. Prolyl-isomerase Pin1 recognizes specific peptide bonds and modulates function of proteins altering cellular homeostasis. The present study investigates Pin1 role in diabetes-induced vascular disease.

Methods and results
In human aortic endothelial cells (HAECs) exposed to high glucose, up-regulation of Pin1-induced mitochondrial translocation of pro-oxidant adaptor p66Shc and subsequent organelle disruption. In this setting, Pin1 recognizes Ser-116 inhibitory phosphorylation of endothelial nitric oxide synthase (eNOS) leading to eNOS–caveolin-1 interaction and reduced NO availability. Pin1 also mediates hyperglycaemia-induced nuclear translocation of NF-κB p65, triggering VCAM-1, ICAM-1, and MCP-1 expression. Indeed, gene silencing of Pin1 in HAECs suppressed p66Shc-dependent ROS production, restored NO release and blunted NF-κB p65 nuclear translocation. Consistently, diabetic Pin1−/− mice were protected against mitochondrial oxidative stress, endothelial dysfunction, and vascular inflammation. Increased expression and activity of Pin1 were also found in peripheral blood monocytes isolated from diabetic patients when compared with age-matched healthy controls. Interestingly, enough, Pin1 up-regulation was associated with impaired flow-mediated dilation, increased urinary 8-iso-prostaglandin F2α and plasma levels of adhesion molecules.

Conclusions
Pin1 drives diabetic vascular disease by causing mitochondrial oxidative stress, eNOS dysregulation as well as NF-κB-induced inflammation. These findings provide molecular insights for novel mechanism-based therapeutic strategies in patients with diabetes.

Keywords
Oxidative stress • Endothelial function • Inflammation • Diabetes mellitus

* Corresponding author. Tel: +46 851775398, Fax: +46 8344964, Email: francesco.cosentino@ki.se
† F.P. and S.C. contributed equally to this work.
Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.
Translational Perspective

The present study demonstrates that Pin1 is a common activator of key pathways involved in diabetic vascular disease in different experimental settings including primary human endothelial cells, knockout mice, and diabetic patients. Gene silencing and genetic disruption of Pin1 prevent hyperglycaemia-induced mitochondrial oxidative stress, endothelial dysfunction, and vascular inflammation. Moreover, we have translated our findings to diabetic patients. In line with our experimental observations, Pin1 up-regulation is associated with impaired flow-mediated dilation, increased oxidative stress, and plasma levels of adhesion molecules. In perspective, these findings may provide the rationale for mechanism-based therapeutic strategies in patients with diabetes.

Introduction

Risk of cardiovascular complications is extremely high in patients with diabetes mellitus. In this setting, hyperglycaemia is a key player in the development of atherosclerotic disease. Accumulation of reactive oxygen species and inflammation are major features of diabetic vascular phenotype. However, the underlying mechanisms remain to be elucidated. A better understanding of the pathways involved in hyperglycaemia-induced vascular damage may provide the basis for novel therapeutic strategies to reduce the burden of cardiovascular disease in patients with diabetes.

Phosphorylation of proteins on serine or threonine residues preceding proline is emerging as a key signalling mechanism in several physiological and pathological processes. The peptidyl-prolyl cis-trans isomerase Pin1 recognizes specific phosphorylated Ser/Thr-Pro-peptide bonds and regulates their conformational changes with high efficiency. Pin1-catalysed isomerization modulates function of proteins involved in cellular homeostasis. On the other hand, impaired expression and activity of Pin1 is implicated in the pathogenesis of cancer and Alzheimer’s disease. Indeed, Pin1 is overexpressed in most human cancers and correlates with prognosis. This isomerase activates numerous oncogenes/growth enhancers and inhibits crucial tumour suppressors. Moreover, Pin1 is required for the activation of NF-κB signalling in cancer cells and participates to mitochondrial localization of oxidant proteins p66Shc and p53.

Recent work has suggested that Pin1 may also play a role in the vascular endothelium. In bovine endothelial cells, Pin1 negatively modulates endothelial nitric oxide synthase (eNOS) activity via isomerization of the phosphorylated Ser-116 residue. In hyperglycaemic conditions, p66Shc, eNOS, and NF-κB are key players triggering vascular complications. The mitochondrial adaptor p66Shc is involved in the generation of reactive oxygen species leading to cellular apoptosis and vascular damage. Although the role of p66Shc as a regulator of lifespan in mammals has been challenged by recent controversial findings, its importance is well-established in the setting of diabetic vascular complications. Genetic deletion of p66Shc protects against ROS-dependent endothelial dysfunction in diabetic mice. Notably, p66Shc expression is increased in peripheral monocytes of patients with type 2 diabetes (T2DM) and correlates with oxidative stress. Nitric oxide bioavailability is a key marker of vascular health and preservation of eNOS function warrants endothelial homeostasis and prevents atherothrombosis. In addition, nuclear translocation of NF-κB p65 leads to endothelial up-regulation of adhesion molecules critically involved in the diabetic atherosclerotic phenotype. Hence, Pin1-dependent isomerization may alter function of proteins involved in the diabetic vascular phenotype.

In experimental and human diabetes, we show that Pin1 is up-regulated by hyperglycaemia and triggers detrimental pathways leading to vascular complications. Targeting Pin1 protects against hyperglycaemia-induced mitochondrial oxidative stress, endothelial dysfunction, and vascular inflammation and may provide novel therapeutic insights in patients with diabetes.

Methods

A detailed description of the methods is provided in Supplementary material online.

Cell culture

Human aortic endothelial cells (HAECs, passages 5–7) were exposed for 3 days either to normal glucose (5 mmol/L) or high glucose concentrations (25 mmol/L). Mannitol (25 mmol/L) was used as an osmotic control.

Animals

Four- to six-month-old male C57BL/6 mice, Pin1 WT mice and Pin1−/− mice were used in all the experiments. Animal experiments were conducted in accordance with the guidelines approved by the Institutional Animal Care Committee of the University of Zurich, Switzerland, University of Rome ‘Sapienza’ and University of Trieste, Italy.

Study population

Thirty-seven patients with T2DM and 20 age-matched healthy subjects were consecutively recruited at the Cardiology Units of Sant’Andrea Hospital, University ‘Sapienza’ and Catholic University (Rome, Italy). The study protocol was approved by Local Ethics Committee and, in accordance with institutional Guidelines, all the participants were aware of the investigational nature of the study and gave written consent for their participation.

Statistical analysis

All data are presented as means ± SEM. Statistical comparison were made by using Student’s t-test for unpaired data and one-way ANOVA, followed by Bonferroni’s post hoc test, when appropriate. The between-variable correlations were measured by Spearman’s analysis. Probability values <0.05 were considered statistically significant. All analyses were performed with GraphPad Prism (version 5.0) and SPSS (version 20) softwares.
Results

High glucose increases Pin1 expression and activity in human endothelial cells

To investigate the effects of hyperglycaemia on Pin1 expression, HAECs were exposed to high (HG, 25 mmol/L) and normal (NG, 5 mmol/L) glucose concentrations for 72 h. High glucose levels caused a significant up-regulation of Pin1 both at the mRNA and protein level (Figure 1A). Moreover, HG increased enzyme activity (Figure 1B). Interestingly, we found that Pin1 up-regulation is modulated by DNA-related epigenetic changes. Indeed, Pin1 promoter methylation, an important repressor of gene transcription, was significantly reduced in HAECs exposed to high glucose when compared with normal glucose (Figure 1C). Mannitol, used as an osmotic control, did not exert any effect on Pin1 expression or activity (data not shown).

Pin1 mediates p66Shc-dependent mitochondrial ROS production

The molecular link between the isomerase Pin1 and mitochondrial adaptor p66Shc was investigated by pull-down experiments performed in HAECs exposed to HG and NG conditions. We observed that Pin1 recognizes Ser-36 phosphorylation of p66Shc induced by high glucose (Figure 1D and E). Interestingly, Pin1-dependent isomerization is able to induce p66Shc mitochondrial translocation and subsequent O2•− generation (Figure 1F and G). Indeed, gene silencing of Pin1 blunted mitochondrial translocation of p66Shc, preventing hyperglycaemia-induced ROS generation (Figure 1F and G).

Knockdown of Pin1 prevents mitochondrial network derangement and cytochrome c release

Loss of mitochondrial integrity is emerging as a determinant of endothelial dysfunction in diabetes. In this regard, we investigated whether targeting Pin1 protects against hyperglycaemia-induced mitochondrial network disruption. Under control conditions, HAECs showed a complex network of thread-like mitochondria while exposure to high glucose induced a marked loss of mitochondrial networks characterized by smaller punctuate mitochondria, as shown by a confocal microscopy (Figure 2A). Interestingly, Pin1 knockdown prevented mitochondrial rupture and DNA fragmentation (Figure 2A and B). Moreover, isolated mitochondria were challenged with calcium overload and the rate of swelling determined by light scattering. Organelles from HAECs exposed to normal glucose showed stable absorbance throughout the 20-min time-course. In contrast, HG-treated cells displayed mitochondrial...
swelling which was prevented by Pin1 down-regulation (Figure 2C).
Silencing of Pin1 also protected against glucose-induced cytochrome c release, as assessed by double staining and western blot (Figure 2D and E).

Pin1 inhibits endothelial nitric oxide synthase activity

On the basis of previous studies showing that Pin1 regulates eNOS activity, we investigated whether Pin1 may affect eNOS in the presence of HG concentration. We found that endothelial NO release was impaired after exposure to HG, whereas concomitant silencing of Pin1 restored NO availability (Figure 2F). Pull-down experiments demonstrated that Pin1 recognizes high glucose-induced Ser-116 eNOS inhibitory phosphorylation, favouring association of eNOS with caveolin-1, an important repressor of eNOS catalytic activity28 (Figure 2G–I). Accordingly, Pin1 knockdown prevented eNOS–caveolin-1 interaction, contributing to the preservation of NO availability in our setting (Figure 2G).

Pin1 mediates hyperglycaemia-induced up-regulation of adhesion molecules

Since Pin1 is a critical mediator of inflammation in cancer, we investigated whether this isomerase contributes to endothelial inflammation in hyperglycaemic conditions. Exposure to HG caused a
significant up-regulation of the adhesion molecules vascular adhesion cell molecule-1 (VCAM-1), intercellular cell adhesion molecule-1 (ICAM-1), and MCP-1 in human aortic endothelial cells exposed to normal and high glucose concentrations in the presence or in the absence of Pin1 siRNA ($n = 6$). *$P < 0.01$ vs. NG; §$P < 0.01$ vs. HG. (B) Immunoprecipitation showing the interaction between Pin1 and NF-kB p65 in cells treated with high or normal glucose. IB, immunoblotting; IP, immunoprecipitation. (C) Representative western blot showing NF-kB p65 nuclear translocation. GAPDH and Histone 1 indicate loading controls for cytosolic and nuclear fractions, respectively. (D) NF-kB p65 binding activity ($n = 5$). Results are presented as means ± SEM. NG, normal glucose, HG, high glucose. VCAM-1, vascular adhesion cell molecule-1; ICAM-1, intercellular cell adhesion molecule-1; MCP-1, monocyte chemoattractant protein-1, NF-kB, nuclear factor kappa-B.

Figure 3 Pin1 triggers up-regulation of inflammatory adhesion molecules via nuclear factor kappa-B signalling. (A) Gene expression of inflammatory adhesion molecules vascular adhesion cell molecule-1, intercellular adhesion molecule-1, and MCP-1 in human aortic endothelial cells exposed to normal and high glucose concentrations in the presence or in the absence of Pin1 siRNA ($n = 6$). *$P < 0.01$ vs. NG; §$P < 0.01$ vs. HG. (B) Immunoprecipitation showing the interaction between Pin1 and NF-kB p65 in cells treated with high or normal glucose. IB, immunoblotting; IP, immunoprecipitation. (C) Representative western blot showing NF-kB p65 nuclear translocation. GAPDH and Histone 1 indicate loading controls for cytosolic and nuclear fractions, respectively. (D) NF-kB p65 binding activity ($n = 5$). Results are presented as means ± SEM. NG, normal glucose, HG, high glucose. VCAM-1, vascular adhesion cell molecule-1; ICAM-1, intercellular cell adhesion molecule-1; MCP-1, monocyte chemoattractant protein-1, NF-kB, nuclear factor kappa-B.

Diabetic Pin1$^{−/−}$ mice are protected against endothelial dysfunction

Diabetes induced a significant increase of Pin1 expression in mouse aorta (Figure 4A). WT and Pin1$^{−/−}$ mice were studied to investigate whether Pin1 contributes to hyperglycaemia-induced endothelial dysfunction in vivo. Diabetic animals did not differ for body weight, glucose levels, blood pressure, and lipids (Supplementary material online, Table S1). Endothelial function was normal in control WT and Pin1$^{−/−}$ mice (Figure 4B). Interestingly, enough, endothelium-dependent relaxation to acetylcholine ($10^{-9}−10^{-6} \text{mol/L}$) was impaired in WT diabetic mice but not in Pin1$^{−/−}$ mice (Figure 4B). In contrast, endothelium-independent relaxation to sodium nitroprusside ($10^{-10}−10^{-5} \text{mol/L}$) did not differ across the experimental groups (data not shown).

Genetic deletion of Pin1 prevents mitochondrial oxidative stress

In line with our *in vitro* findings, mitochondrial ROS generation was abolished in Pin1$^{−/−}$ diabetic vessels (Figure 4C). Accordingly, genetic disruption of the isomerase prevented diabetes-related mitochondrial DNA fragmentation and swelling, two important hallmarks of mitochondrial dysfunction (Figure 4D and E). To further investigate the link between Pin1 and vascular dysfunction *in vivo*, knockdown of Pin1 was achieved by using siRNA technology in WT diabetic mice. Interestingly, Pin1 silencing rescued endothelial dysfunction when compared with scrambled-treated WT diabetic mice (Figure 4F).
Suppression of diabetes-induced vascular inflammation in Pin1−/− mice

To investigate the effects of Pin1 on vascular inflammation, the expression of VCAM-1 and ICAM-1 was assessed in the aorta of WT and Pin1−/− mice, with or without diabetes (n = 5). ND, not detectable. (B) Isometric tension studies in aortic rings isolated from the four experimental groups (WT control = 10, WT diabetic = 12, Pin1−/− control = 8, Pin1−/− diabetic = 7) per group. *P < 0.05 and **P < 0.01 vs. WT diabetic. NE, norepinephrine. (C) ESR spectroscopy analysis of mitochondrial superoxide anion (O2−) generation (n = 6). (D) Mitochondrial DNA integrity assessed by real-time PCR in the four experimental groups (n = 7). *P < 0.01 vs. WT control; P < 0.01 vs. WT diabetic. (E) Mitochondrial swelling assay (n = 6). *P < 0.05 vs. untreated. (F) Endothelium-dependent relaxation in diabetic mice treated with scramble or Pin1 siRNA. #P < 0.05 and ##P < 0.01 vs. scrambled siRNA. Results are presented as means ± SEM.

Figure 4 Genetic deletion of Pin1 protects against diabetes-related endothelial dysfunction and mitochondrial oxidative stress. (A) Representative western blot and densitometric quantification of Pin1 expression in the aorta of WT and Pin1−/− mice, with or without diabetes (n = 5). ND, not detectable. (B) Isometric tension studies in aortic rings isolated from the four experimental groups (WT control = 10, WT diabetic = 12, Pin1−/− control = 8, Pin1−/− diabetic = 7) per group. *P < 0.05 and **P < 0.01 vs. WT diabetic. NE, norepinephrine. (C) ESR spectroscopy analysis of mitochondrial superoxide anion (O2−) generation (n = 6). (D) Mitochondrial DNA integrity assessed by real-time PCR in the four experimental groups (n = 7). *P < 0.01 vs. WT control; P < 0.01 vs. WT diabetic. (E) Mitochondrial swelling assay (n = 6). *P < 0.05 vs. untreated. (F) Endothelium-dependent relaxation in diabetic mice treated with scramble or Pin1 siRNA. #P < 0.05 and ##P < 0.01 vs. scrambled siRNA. Results are presented as means ± SEM.

Suppression of diabetes-induced vascular inflammation in Pin1−/− mice

To investigate the effects of Pin1 on vascular inflammation, the expression of VCAM-1 and ICAM-1 was assessed in the aorta of WT and Pin1−/− diabetic mice. Aortas isolated from WT diabetic mice displayed a significant up-regulation of these adhesion molecules, as shown by immunofluorescence and real-time PCR (Figure 5A and B). Such an effect was explained by increased NF-κB p65 nuclear translocation and binding activity (Figure 5C and D). Interestingly, we found that diabetic mice lacking Pin1 were protected against vascular inflammation (Figure 5A–D).

Pin1 expression and activity in patients with diabetes

Pin1 gene expression and activity were assessed in peripheral blood monocytes of 37 patients with T2DM and 20 age-matched healthy controls. Type 2 diabetes mellitus subjects had higher BMI, waist circumference, blood pressure, and lower HDL levels (Supplementary material online, Table S2). Expression and activity of Pin1 were increased in T2DM and correlated with HbA1c as well as fasting plasma glucose (FPG, Figure 6A–C).

Importantly, FPG (β = 0.39, P = 0.021) and HbA1c (β = 0.31, P = 0.034) were independently associated with Pin1 gene expression, as shown by linear regression analysis adjusted for age, gender, waist circumference, blood pressure, HDL, and medications.

Pin1 up-regulation, endothelial dysfunction, and oxidative stress

Endothelial function, assessed by flow-mediated dilatation (FMD), was significantly impaired in T2DM subjects when compared with controls (Supplementary material online, Table S3). Nitroglycerine-mediated dilatation was comparable in the two groups (Supplementary material online, Table S3) and no differences were observed in arterial diameter as well as resting or hyperaemic flow (data not shown). In agreement with an impairment of endothelial function, diabetic patients showed higher urinary levels of 8-isoPGF2α_ in vivo
marker of oxidative stress (Supplementary material online, Table S3). Interestingly enough, Pin1 gene expression and activity significantly correlated with endothelial dysfunction and oxidative stress (Figure 7A and B). This finding was confirmed by linear regression analysis adjusted for confounding factors (Supplementary material online, Table S4).

Pin1 correlates with plasma adhesion molecules

We also investigated the correlation between Pin1 and plasma adhesion molecules. Vascular adhesion cell molecule-1, ICAM-1, and MCP-1 were significantly higher in T2DM when compared with controls (Supplementary material online, Table S4). Of interest, a significant association was found between Pin1 expression/activity and adhesion molecules, as shown by correlation and linear regression analysis (Figure 8A, Supplementary material online, Table S4). Collectively, these findings show that Pin1 may be critically involved in the vascular disease phenotype observed in diabetic patients (Figure 8B).

Discussion

Here, we show that Pin1 is up-regulated by hyperglycaemia and orchestrates pivotal molecular events triggering diabetic vascular disease. Several lines of evidence support our conclusions. Pin1 expression and activity are significantly increased in human endothelial cells exposed to high glucose and in aortas of diabetic mice. Activatory Ser-36 phosphorylation of adaptor protein p66Shc is specifically recognized by Pin1 and this leads to p66Shc mitochondrial translocation, ROS production, and organelle disruption. Pin1 also recognizes Ser-116 eNOS inhibitory phosphorylation contributing to impaired NO availability. Importantly, genetic deletion of Pin1 prevented vascular oxidative stress, endothelial dysfunction, and NF-κB-driven inflammation in diabetic mice. In addition, the expression and activity of Pin1 are increased in peripheral blood monocytes of T2DM patients and correlate with brachial artery FMD, urinary levels of the oxidative marker 8-isoPGF2α, and plasma adhesion molecules.

Pin1 is emerging as a novel regulator of cellular function via modifications of protein structure upon recognition of a specific phosphorylation motif (Ser/Thr-Pro). Pin1-dependent isomerization leads to stabilization of proteins in active configuration and enhances their degradation or accessibility for further modifications by other enzymes. The biological relevance of such a signaling mechanism is supported by the notion that Pin1 dysregulation may contribute to diverse pathological conditions such as cancer and Alzheimer’s disease. Indeed, this isomerase is overexpressed in 38 out of 60 different human cancers and predicts prognosis. In cancer cells, Pin1 recognizes a phosphorylated Thr-254-Pro motif of NF-κB p65 and inhibits its binding to IκBα, resulting in increased nuclear translocation. Moreover, Pin1 controls mitochondrial trafficking of pro-oxidant proteins. In murine
fibroblasts, Pin1 blockade prevents translocation of p66Shc to the mitochondria and oxidative stress. Although Pin1 is an emerging trigger of proliferative, inflammatory, and pro-apoptotic signalling in cancer, its role in the pathogenesis of vascular disease remains to be elucidated. A recent work in bovine endothelial cells showed that Pin1 recognizes Ser-116 eNOS inhibitory phosphorylation and blunts NO release. Indeed, pharmacological blockade of Pin1 induced a 30% increase in NO production. Since mitochondrial oxidative stress, reduced NO availability, and vascular inflammation are major hallmarks of diabetic vascular disease, we were prompted to investigate whether Pin1 is affected by hyperglycaemia and mediates vascular damage in this setting. Our findings show that Pin1 is up-regulated by high glucose levels and is responsible for mitochondrial translocation of p66Shc in the vascular endothelium. We and others have demonstrated that p66Shc is a key mediator of ROS generation and, hence, a major contributor of diabetic vascular complications. Of note, p66Shc gene expression is increased in mononuclear cells obtained from patients with T2DM and correlates with oxidative stress. The present study demonstrates that Pin1 is the upstream regulator...
of p66šc and its inhibition prevents oxidative stress and mitochondrial disruption in human endothelial cells and in mice under hyperglycaemic conditions. The relevance of our results is strengthened by recent work suggesting that loss of mitochondrial integrity may affect endothelial function in diabetic patients. 27,33

We also found that in hyperglycaemic conditions Pin1 impairs eNOS activity via isomerization of its inhibitory Ser-116 residue. Proline-directed phosphorylation, requiring a proline at the P+1 position, is a pre-requisite for Pin1 interaction and subsequent isomerization of its substrates. Of the five known serine/threonine phosphorylation sites in human eNOS, only Ser-116 conforms to the P+1 proline requirement. 34 In our study, Pin1 isomerizes Ser-116 favouring eNOS interaction with caveolin-1, an important repressor of eNOS catalytic activity in the endothelium.28,35 Accordingly, Pin1 deletion suppressed eNOS trafficking to the plasmalemmal caveolae and restored NO availability. These latter studies provided insights on the role of Pin1 in the vessel wall. However, our work demonstrates for the first time that Pin1 activation is a key driver of vascular damage in diabetes. Indeed, this study clearly shows that hyperglycaemia-induced Pin1 up-regulation leads to a deleterious vascular phenotype which can be prevented by targeting Pin1. Accordingly, Pin1−/− diabetic mice are protected against hyperglycaemia-induced endothelial dysfunction and mitochondrial oxidative stress.

Figure 7 Pin1 correlates with endothelial function and oxidative stress. (A and B) Correlation of Pin1 expression and activity with flow-mediated vasodilation and urinary 8-isoPGF2α levels. Red and blue circles indicate healthy controls (n = 12–20) and T2DM patients (n = 37), respectively. FMD, flow-mediated dilation; 8-isoPGF2α, 8-iso-prostaglandin F2α. r = Spearman’s correlation coefficient.

We also provide strong evidence that Pin1 drives vascular inflammation in the setting of diabetes. Although it was recently shown that Pin1 promotes NF-κB p65 signalling in cancer cells,8 no previous work investigated whether this isomerase mediates inflammation in the cardiovascular system. In our study Pin1-induced NF-κB p65 nuclear translocation and up-regulation of adhesion molecules in vitro and in vivo. We show here that deletion of Pin1 suppresses NF-κB p65 and expression of VCAM-1, ICAM-1, and MCP-1. These findings deserve attention since NF-κB activation has been reported in the endothelium of humans with T2DM.23

In contrast with our results, a previous study showed that Pin1−/− mice exhibit a significant impairment of endothelium-dependent relaxation and high blood pressure values.38 Here, we
do not observe any endothelial dysfunction or hypertension in mice lacking Pin1. Different age of animals and experimental conditions may contribute to explain such discrepancy. In line with our findings, it was recently reported that blood pressure values and cardiac phenotype are comparable in WT and Pin1\(^{-/-}\) mice. Additional experimental observations suggest that silencing of Pin1 prevents angiotensin II-dependent oxidative stress, indicating that Pin1 blockade may rather be protective against arterial hypertension. Another study also confirmed our results by showing that Pin1 overexpression impairs endothelium-dependent vasorelaxation in mice.

In the present study, we have also translated our experimental findings to diabetic patients. Indeed, we found a significant up-regulation of Pin1 in subjects with T2DM when compared with age-matched healthy controls. Moreover, Pin1 correlated with brachial artery FMD, urinary 8-isoPGF\(_{2\alpha}\), and plasma levels of adhesion molecules. Linear regression analyses showed that Pin1 was associated with oxidative stress, endothelial dysfunction, and vascular inflammation regardless of confounding factors. FPG and HbA\(_1c\) were also independent predictors of Pin1 up-regulation. Although the assessment of Pin1 expression in peripheral monocytes cannot be directly related to endothelial dysfunction, these findings are in

Figure 8 Pin1 correlates with inflammatory adhesion molecules in patients with diabetes. (A) Correlation of Pin1 expression and activity with plasma adhesion molecules vascular adhesion molecule-1, intercellular cell adhesion molecule-1, and monocyte chemoattractant protein-1. Red and blue circles indicate healthy controls (n = 12–20) and diabetic patients (n = 37), respectively. *r* = Spearman’s correlation coefficient. VCAM-1, vascular adhesion cell molecule-1; ICAM-1, intercellular cell adhesion molecule-1; MCP-1, monocyte chemoattractant protein-1. (B) Schematic representation of the Pin1 role in diabetic vascular disease. Diabetes causes up-regulation of Pin1 favouring its interaction with phosphorylated serine and threonine residues of adaptor protein p66\(^{shc}\), endothelial nitric oxide synthase, and NF-κB p65. Pin1-p66\(^{shc}\) interaction is required for translocation of p66\(^{shc}\), mitochondrial ROS generation, and disruption. Phosphorylated endothelial nitric oxide synthase at Ser-116 is recognized by Pin1 leading to endothelial nitric oxide synthase–caveolin-1 interaction, blunted endothelial nitric oxide synthase activity and reduced NO release. Pin1 also triggers diabetes-induced nuclear translocation of NF-κB p65 and subsequent up-regulation of inflammatory adhesion molecules. All together these findings indicate that Pin1-induced conformational changes are critically involved in the diabetic vascular disease phenotype.
accordance with our experiments in HAEcs demonstrating a key role of the isomerase in the human endothelium. The strength of our work is the observation of Pin1 as a key mediator of hyperglycaemia-related vascular damage across different experimental settings including knockout mice, primary human endothelial cells, and T2DM patients. Another novel finding is that hyperglycaemia reduces methylation of the Pin1 promoter. Since methylation is an important regulator of gene transcription, our findings suggest that this epigenetic signature may contribute to Pin1 up-regulation in this setting. Undoubtedly, further studies are needed to better characterize epigenetic-driven Pin1 transcription in disease states.

In conclusion, we have shown that Pin1-dependent isomerization modulates key proteins involved in diabetic vascular disease (Figure 8B). Targeting Pin1 may restore vascular health by preventing such deleterious events. These findings have important implications for future mechanism-based therapeutic strategies in patients with diabetes.

Supplementary material
Supplementary material is available at European Heart Journal online.

Funding
This study was supported by grants from the Swiss Heart Foundation, Italian Ministry of Education, University and Research, PRIN 2010-2011 (to F.C.), and the Swiss National Research Foundation to T.F.L. (3100-06811802/1). AIRC Special Program Molecular Clinical Oncology ‘5 per mille’ and Italian Ministry of University and Research (RBAP10XKNC_003 and PRIN 2009-2009YP9AES) to G.D.S. F.P was the recipient of a PhD programme in Experimental Medicine at the University of Rome ‘Sapienza’.

Conflicts of interest: none declared.

References

CARDIOVASCULAR FLASHLIGHT

doi:10.1093/eurheartj/ehu468
Online publish-ahead-of-print 17 December 2014

Extensive xanthomas with severe coronary artery disease in a young patient with familial hypercholesterolemia

Vikas Agrawal and **Bhupendra Kumar Sihag**

Department of Cardiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India

* Corresponding author. Tel: +91 9453300628, Email: vikky25@yahoo.com

A 20-year-old female presented to us with recent onset unstable angina. She had a strong family history of premature coronary artery disease (two elder sisters dying at a young age due to CAD). She had large tendinous xanthomas over extensor tendons of metacarpophalangeal joints and patella (Panels A–C). She also had xanthelesma, gaint tuberous xanthomas over extensor aspects of limbs and buttocks and Plane xanthoma involving the neck (Panels D–H). The ECG showed deep ST depression in all leads with ST elevation in aVr (left main pattern, Panel I). Laboratory tests showed total cholesterol of 810 mg/dL (20.9 mmol/L), low-density lipoprotein cholesterol (LDL) of 733 mg/dL (18.9 mmol/L), triglycerides (TG) of 195 mg/dL (2.2 mmol/L), and high-density lipoprotein cholesterol of 39 mg/dL (1.0 mmol/L). Her coronary angiography revealed severe left main disease involving ostium and mid shaft and also ostial RCA disease (Panels I, J, and K). Genetic study showed homozygotic mutation in LDL receptor gene. The patient is being planned for urgent PCI with intensive medical therapy.

Panel A: Large tendinous xanthomas over extensor tendons of metacarpophalangeal joints.
Panel B: Large tendinous xanthomas over extensor tendons of metatarsophalangeal joints.
Panel C: Large tendinous xanthomas over patella.
Panel D: Xanthelesma.
Panel E: Gaint tuberous xanthomas over extensor aspects of elbow.
Panel F: Gaint tuberous xanthomas buttocks.
Panel G: Plane xanthoma involving the neck.
Panel H: Xanthoma involving extensor aspect of forearm.
Panel I: ECG showing deep ST depression in all leads with ST elevation in aVr (left main pattern).
Panel J: Coronary angiography showing severe left main disease involving ostium and mid shaft.
Panel K: Coronary angiography showing severe ostial RCA disease.