Clinical update

The future of transcatheter mitral valve interventions: competitive or complementary role of repair vs. replacement?

1University Hospital of Zurich, Rämistrasse 100, 8089-CH, Zurich, Switzerland; 2San Raffaele University Hospital, Milan, Italy; 3Tel-Aviv Medical Center, Tel-Aviv, Israel; 4Foundation for Cardiovascular Medicine, San Diego, USA; 5Deutsches Herzzentrum Berlin, Berlin, Germany; 6Evanston Hospital, Evanston, USA; 7Rigshospitalet, Copenhagen, Denmark; 8Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; 9Cedars Sinai Medical Center, Los Angeles, USA; 10Asklepios Klinik St. Georg, Hamburg, Germany; 11University of Kiel, Kiel, Germany; 12The Heart Hospital, Piaono, USA; 13University of Bonn, Bonn, Germany; 14McGill University Health Centre, Montreal, Canada; 15University of Washington Medical Center, Seattle, USA; 16Lenox Hill Heart and Vascular Institute of New York, New York, USA; 17Hamburg University Cardiovascular Center, Hamburg, Germany; 18Columbia University Medical Center, New York, NY, USA; 19Guy’s & St Thomas’ Hospitals NHS Foundation Trust, London, UK; 20Bichat Hospital, Paris, France; 21St. Paul’s Hospital, University of British Columbia, Vancouver, Canada; and 22Bern University Hospital, Bern, Switzerland

Received 13 December 2014; revised 11 March 2015; accepted 23 March 2015; online publish-ahead-of-print 13 April 2015

Transcatheter mitral interventions have been developed to address an unmet clinical need and may be an alternative therapeutic option to surgery with the intent to provide symptomatic and prognostic benefit. Beyond MitraClip therapy, alternative repair technologies are being developed to expand the transcatheter intervention armamentarium. Recently, the feasibility of transcatheter mitral valve implantation in native non-calcified valves has been reported in very high-risk patients. Acknowledging the lack of scientific evidence to date, it is difficult to predict what the ultimate future role of transcatheter mitral valve interventions will be. The purpose of the present report is to review the current state-of-the-art of mitral valve intervention, and to identify the potential future scenarios, which might benefit most from the transcatheter repair and replacement devices under development.

Keywords
Transcatheter mitral intervention • Transcatheter mitral repair • Transcatheter mitral implantation

Introduction

Mitral regurgitation (MR) affects almost 10% of individuals over 75 years of age.1 Open-heart surgery is the gold standard for the treatment of severe MR as excellent outcomes can be achieved in most patients, often adopting minimally invasive approaches. However, in up to 50% of patients with severe MR surgical treatment is not performed owing to increased risk related to comorbidities.2 Transcatheter mitral interventional techniques are an alternative therapeutic option.3,4 Transcatheter edge-to-edge repair with the MitraClip system (Abbott Vascular Inc, Menlo Park, CA, USA) has demonstrated safety and efficacy in different clinical settings.3,4 Additional repair and replacement technologies are being developed to expand the transcatheter intervention armamentarium (Tables 1 and 2).5 Transcatheter mitral valve implantation (TMVI) with transcatheter aortic valve implantation (TAVI) prostheses has been performed in patients with surgical degenerated bioprostheses or with recurrent MR following annuloplasty.6,7 Recently, few cases of TAVI prostheses implanted in a calcified native valve have been reported.8,9 The feasibility of TMVI in native non-calcified valves has been recently reported in very high-risk patients, mainly with functional MR (FMR).10

Acknowledging the lack of scientific evidence to date, it is difficult to predict what the ultimate future role of transcatheter mitral valve interventions will be. The purpose of the present report is to review
Table 1 Transcatheter mitral valve repair technology under development

<table>
<thead>
<tr>
<th>Device name and therapy type</th>
<th>Device structure</th>
<th>Status international</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MitraClip (Abbott Vascular)</td>
<td></td>
<td>CE Mark approval</td>
<td>– Percutaneous mitral repair based on Alfieri edge-to-edge surgical approach, designed for both degenerative and FMR.</td>
</tr>
<tr>
<td>Edge-to-edge repair</td>
<td></td>
<td>FDA approved</td>
<td>– Features a tiny V-shaped clip.</td>
</tr>
<tr>
<td>NeoChord (NeoChord DS1000)</td>
<td></td>
<td>CE Mark approval</td>
<td>– Indication requested for FDA approval is significant symptomatic DMR in presence of prohibitive risk for mitral valve surgery</td>
</tr>
<tr>
<td>Chordal repair</td>
<td></td>
<td>gained</td>
<td>– Instrumentation used to enable beating heart, transapical approach, mitral valve repair by artificial chordae implantation</td>
</tr>
<tr>
<td>V-Chordal-Off Pump (Valtech)</td>
<td></td>
<td>First-in-man study</td>
<td>– Designed for leaflet prolapse</td>
</tr>
<tr>
<td>Chordal repair</td>
<td></td>
<td>complete</td>
<td>– Sutureless implantation of neochordae on the leaflets under direct surgical exposure</td>
</tr>
<tr>
<td>CARILLON (Cardiac Dimensions)</td>
<td></td>
<td>CE Mark approval</td>
<td>– Off-pump, the chordal length can be adjusted under live echo guidance, on beating heart</td>
</tr>
<tr>
<td>Indirect Annuloplasty</td>
<td></td>
<td>gained</td>
<td>– Implanted mitral annular constraint device percutaneously placed into the coronary sinus and great cardiac vein</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IDE submitted for</td>
<td>– Constructed of nitinol wire with distal and proximal anchors connected by an intervening cable</td>
</tr>
<tr>
<td>GDS Accucinch (GDS)</td>
<td></td>
<td>International feasibility trial underway</td>
<td>– Designed specifically for heart failure patients with significant MR due to mitral annular enlargement</td>
</tr>
<tr>
<td>Direct Annuloplasty</td>
<td></td>
<td></td>
<td>– Catheter-based delivery of a sub-valvular left ventricular reshaping (ventriculoplasty) system designed to reshape and resize the left ventricular base</td>
</tr>
<tr>
<td>Mitralign Bident (Mitralign)</td>
<td></td>
<td>CE Mark trial</td>
<td>– Re-establish native mitral valve geometry while preserving native leaflet function, and restore leaflet coaptation</td>
</tr>
<tr>
<td>Direct annuloplasty</td>
<td></td>
<td>completed</td>
<td>– Transcatheter annuloplasty for mitral repair</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US feasibility trial</td>
<td>– Involves delivery of polyester pledgets via LV through posterior mitral annulus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>planned</td>
<td>– Pledgets are plicated and locked directly on the annulus</td>
</tr>
<tr>
<td>Cardioband TF (Valtech)</td>
<td></td>
<td>CE Mark trial</td>
<td>– An adjustable, sutureless posterior annuloplasty band implanted trough transmural transapical route</td>
</tr>
<tr>
<td>Direct annuloplasty</td>
<td></td>
<td>underway</td>
<td>– Designed to reduce the septo-lateral annular diameter</td>
</tr>
<tr>
<td>Millipede Ring (Millipede)</td>
<td></td>
<td>Preclinicals underway</td>
<td>Nitinol ring designed for tricuspid or mitral valve repair</td>
</tr>
<tr>
<td>Direct annuloplasty</td>
<td></td>
<td></td>
<td>Catheter-based treatment for MR featuring a clip that holds together the leaflets of the mitral valve</td>
</tr>
<tr>
<td>Cardica Mitral Repair (Cardica)</td>
<td></td>
<td>Intellectual property developed</td>
<td>Continued</td>
</tr>
</tbody>
</table>
the current state-of-the-art of mitral valve intervention, and to identify the potential future scenarios, which might benefit most from the transcatheter repair and replacement devices under development.

Transcatheter mitral valve implantation vs. repair: two philosophies

Whereas mitral valve repair is currently the most widely used approach for transcatheter interventions for MR, TMVI offers several theoretical advantages. Transcatheter mitral valve implantation is potentially applicable to a greater proportion of patients; there is a hope that TMVI could provide the concept of ‘one valve fits all’, MR reduction may be more predictable, and the procedure may be less technically demanding and easier to learn. However, due to procedural and design challenges to TMVI, complications may be more catastrophic and less forgiving, while transcatheter mitral valve repair (TMVRep) may be associated with a superior safety profile as it involves a less marked change in valve anatomy and physiology. Repair does not entail a heterologous tissue implant, the related supporting structure does not require anti-coagulation, and it has been a general conclusion in the surgical experience that repair has advantages over valve replacement. The major limitation of TMVRep is

<table>
<thead>
<tr>
<th>Device name and therapy type</th>
<th>Device structure</th>
<th>Status international</th>
<th>Description</th>
</tr>
</thead>
</table>
| MISTRAL (Mitralix) | Preclinicals underway | – Transseptally delivered (12 Fr catheter) implant (3D Nitinol spiral-shaped atraumatic wire) for mitral valve repair via chord grasping
– This is Mitralix’s 1st product |
| V-Chordal-Transfemoral (Valtech) | Preclinicals underway | – Transfemoral chord repair performed via transfemoral approach that is off-pump on a beating heart |
| Kardium MR (Kardium) | Intellectual property developed | – Kardium is developing a percutaneous device for treating mitral valve regurgitation |
| PS3 (MVRx) | First-in-man study underway | – Direct leveraged transatrial shortening of the septo-lateral dimension of the mitral valve by providing two anchor points that are tensioned together |
| MitraFlex (TransCardiac) | Preclinicals underway | – Instruments for minimally invasive transapical mitral valve repairs |
| ValCare MV Repair (ValCare) | Preclinicals underway | – A rigid, ‘D-shape’ annuloplasty ring that is delivered in a transcatheter approach to reduce MR and stabilize the mitral annulus for functional and degenerative MR |
| Mitra-Spacer-Transapical (Cardiosolutions) | First-in-man study underway | – Catheter-based mitral valve spacer to reduce MR improving leaflet coaptation
– Implanted through transapical approach |
<table>
<thead>
<tr>
<th>Device name</th>
<th>Device structure</th>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fortis (Edwards</td>
<td>First-in-man study</td>
<td>Mitrval replacement technology designed to minimize para-valvular leak</td>
<td></td>
</tr>
<tr>
<td>Lifesciences)</td>
<td>underway</td>
<td>Initial version being studied in first-in-man has a transapical delivery system</td>
<td></td>
</tr>
<tr>
<td>Tiara (Neovasc)</td>
<td>First-in-man study</td>
<td>Self-expanding bovine pericardial, D-shaped trileaflet mitral valve implanted using a transapical delivery system</td>
<td></td>
</tr>
<tr>
<td></td>
<td>underway</td>
<td>It is anchored to the mitral annulus</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A transfemoral delivery system is also in development</td>
<td></td>
</tr>
<tr>
<td>TMVi-TA (CardiAQ)</td>
<td>First-in-man study</td>
<td>Self-positioning, self-anchoring, and self-conforming system for transcatheter mitral valve implantation through transapical approach</td>
<td></td>
</tr>
<tr>
<td></td>
<td>completed</td>
<td>2nd-generation device has been developed; this profile covers transfemoral version</td>
<td></td>
</tr>
<tr>
<td>Caisson TMVR (Caisson)</td>
<td>Preclinicals underway</td>
<td>Mitral valve replacement system with a transfemoral delivery system</td>
<td></td>
</tr>
<tr>
<td>MitrCath (Emory</td>
<td>In development</td>
<td>Technology that enables the placement of a stent-mounted bioprosthetic heart valve in the mitral position</td>
<td></td>
</tr>
<tr>
<td>University)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HighLife Mitral Valve</td>
<td>Preclinicals underway</td>
<td>Percutaneous mitral valve replacement technology with a transatrial delivery system</td>
<td></td>
</tr>
<tr>
<td>Replacement (HighLife)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medtronic TMVR</td>
<td>Preclinicals underway</td>
<td>Self-expanding nitinol scaffold and a bovine pericardium valve with three cusps</td>
<td></td>
</tr>
<tr>
<td>(Medtronic)</td>
<td></td>
<td>Designed for fixation with the native mitral annulus</td>
<td></td>
</tr>
<tr>
<td>MitrAssist Valve</td>
<td>Preclinicals underway</td>
<td>A mitral valve that fits into the existing mitral valve</td>
<td></td>
</tr>
<tr>
<td>(MitrAssist)</td>
<td></td>
<td>Delivered through a small-diameter catheter</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>For all forms of mitral regurgitation</td>
<td></td>
</tr>
<tr>
<td>Navigate TMVR (NCSI)</td>
<td>Clinical implants have occurred</td>
<td>Self-expandable mitral valve replacement device featuring a nitinol stent and dehydrated tissue for treatment of functional mitral regurgitation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transatrial, transapical, and transseptal versions are also in development</td>
<td></td>
</tr>
</tbody>
</table>
that MR reduction is less predictable and MR may persist or reoccur. Recurrence could be greater in FMR, due to further remodelling or to poor patient selection. In addition, operators may need to master multiple transcatheter repair techniques to manage the wide variability of mitral disease, and the need to combine different devices in some patients to approximate a complete surgical repair (Figures 1 and 2).

Given the advantages and disadvantages of these two approaches, a patient-specific decision-making algorithm for the optimal device choice will likely be required.

Table 2 Continued

<table>
<thead>
<tr>
<th>Device name</th>
<th>Device structure</th>
<th>Status international</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tendyne/Lutter TMVR (Tendyne)</td>
<td></td>
<td>First-in-man study underway</td>
<td>– Self-expanding, transapical approach to mitral valve replacement</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>– System involves neochords with left ventricular apical tethering for fixation</td>
</tr>
<tr>
<td>Cardiovalve (Valtech)</td>
<td></td>
<td>Predicinicals underway</td>
<td>– Mitral valve replacement system that can be delivered using a transfemoral delivery system in a two-step replacement procedure</td>
</tr>
</tbody>
</table>

Figure 1 Fluoroscopic and echocardiographic imaging guidance of transcatheter mitral repair procedures. Most transcatheter mitral repair procedures are technically demanding and require advanced integrated 3D echocardiographic guidance. (A, B, and C) The three-dimensional echocardiography, the fluoroscopic view, and the intercommissural two-dimensional echocardiography views of a direct annuloplasty procedure with the Cardioband, respectively. (D, E, and F) Three-dimensional echocardiography, the fluoroscopic view, and two-dimensional colour-comparing echocardiography views of during MitraClip implantation.

Mitral valve apparatus physiology: the valve as an integrated component of the left ventricle

The mitral valve is not simply just a valve, it is rather a complex apparatus integrated in the left ventricle (LV), including the annulus, the leaflets, the chordae, the papillary muscles, and the ventricle itself. Beyond its obvious haemodynamic function to ensure forward cardiac output, the mitral apparatus plays a fundamental role in the
structural and functional integrity of the LV. Discontinuation of the mitral-ventricular continuity results in maladaptive remodelling and impaired LV performance. In patients with FMR and severely depressed LV function, contractility of the base of the LV is a key contributor to cardiac output; as a consequence, in patients with prosthetic mitral valve, the fixation of the prosthesis to the annulus may lead to a global reduction in contractility.

The mitral valve plays a fundamental role in the demarcation of the inflow–outflow ventricular tracts, and regulates the flow pattern within the LV. Its fluid-dynamic function prevents energy loss and optimizes fluid–structure interaction. The anterior leaflet of the mitral valve acts as a rudder during the cardiac cycle to redirect flow towards the outflow tract in systole and towards the lateral wall in diastole, generating a virtuous fluid vortex. Loss of the vortex-like circulation is associated with loss of energy, increased LV stress and less efficient work. Preservation of anterior leaflet mobility and asymmetric flow may be associated with better LV performance and may partially explain the loss of ventricular function following replacement.

Mitral repair vs. replacement: lessons learned from surgical experience

A direct translation of the surgical experience to the transcatheter procedures is not always appropriate; however, lessons learned from >50 years of surgery should not be neglected in the development of these new technologies.

Before extracorporeal circulation was available, several off-pump mitral repair techniques were attempted. With the introduction of cardiopulmonary bypass, an open-heart direct access approach and the development of mechanical prostheses, early repair was used progressively less often. Surgeons opted for valve replacement because it was easier to perform and more predictable. Soon the downsides of valve replacement became obvious: the need for anti-coagulation, risk of thromboembolism, prosthetic endocarditis, and impaired LV-function to name a few. Therefore, valve repair re-emerged as the preferred surgical treatment for degenerative MR (DMR) due to improved outcomes.

In current surgical practice, replacement and repair are complementary rather than competitive. According to guidelines, surgical repair should be performed whenever feasible and early intervention is warranted when durability is predicted. Conversely, valve replacement may be considered as replacing one disease state (native valve MR) with another (prosthesis), since the ideal prostheses has not been developed. The advantages of repair over replacement are more evident in patients with DMR: in these patients timely surgical repair restores life-expectancy and provides quality of life similar to an age-matched general population, results that are not realized with a prosthesis, even in elderly and high-risk patients.

In this regard, although mitral valve repair may be more respectful of the innate physiology, and avoids prosthesis-related complications,
Unsolved technical issues with transcatheter mitral valve implantation and transcatheter mitral valve repair

From a pure technical standpoint, transcatheter repair and valve implantation have distinct challenges and advantages (Table 4).

In patients with chronic MR, the annulus is usually dilated, requiring large devices to obtain adequate fixation and sealing and large delivery systems, typically ≥24F. Transfemoral retrograde and transseptal (transfemoral or transjugular) approaches for TMVI delivery may be challenging given the angulation involved and the dimensions and inflexibility of the devices. A direct transatrial approach is a possible alternative. 35 This approach, however, has been essentially abandoned because of sub-optimal coaxial alignment. The transapical approach assures optimal coaxial alignment; however, the LV wall in heart failure patients with FMR is thin, and the LV dilated, dysfunctional, and arrhythmogenic. Dedicated transapical closure devices are under development and may facilitate TMVI. Finally, patients with severely depressed LV systolic function may not tolerate prolonged deployment time or rapid pacing impairing haemodynamic stability.

Stable anchorage of the prosthesis to prevent displacement or migration while enduring continuous cyclical movements of the mitral annulus and the base of the LV as well as of the pressure gradients between the left atrium and LV is of extreme importance. Reliable fixation of the prosthesis is challenging; given the lack of heavy annular calcification in most patients, fixation methods relying solely on radial force are unlikely to be successful. Radial force also risks compression and damage of adjacent structures such as the LV outflow tract (LVOT), the conduction system, the coronary sinus, the left circumflex artery, and aortic root. Additional fixation elements are thus required to ensure proper fixation to the LV or to other components of the sub-valvular apparatus. Since para-valvular regurgitation may be less tolerable in the mitral position, the design of the transcatheter mitral prosthesis must aim at complete sealing.

The wide spectrum of anatomical variations underlying MR introduces further challenges for prosthesis fixation, delivery and sealing; not only are DMR and FMR anatomies different, but DMR includes a
wide spectrum of pathological derangements, ranging from Barlow’s disease (in which the extreme excess of tissue may prevent optimal fixation) to fibroelastic deficiency with isolated segmental prolapse (in which the lack of tissue may not assure an adequate landing zone). The level of implantation and configuration of the bioprosthesis is crucial to minimize the risk of LVOT obstruction (with impaired outflow fluid dynamics), and left atrial protrusion (with impaired inflow fluid dynamics). The potential for erosion and device-related thrombus formation have yet to be defined.

Transcatheter mitral valve repair has its own series of challenges. Rarely, with current devices, TMVRep eliminates MR. The degree of MR reduction to achieve a substantial clinical benefit is still matter of concern, but it is obvious that the potential of TMVI for complete and predictable abolition of MR is appealing. However, in patients with FMR, a mild degree of residual MR after repair may mitigate the acute rise in overload and serve to decompress the LV, making the procedure safer for those with severe LV dysfunction. Further studies are necessary to examine this possibility.

Due to the wide anatomical variability of MR, physicians dedicated to transcatheter mitral interventions will likely need to develop expertise with more than one device. Most TMVRep approaches will require advanced imaging and specific skills, which may limit their uptake, when compared with TVMI. Learning curve is longer in repair, similar to surgery, and outcomes can be less predictable in the early operator/centre experience.

These challenges are counterbalanced by an inclination of TMVRep to be tolerable (as for MitraClip therapy), and associated to fast recovery. This may be especially important in heart failure patients with FMR.

Ultimately, it is most probably that, like with surgery, TMVRep and TMVI will be both complementary and competitive.

Additional considerations: durability and need for anti-coagulation

Design constraints for transcatheter delivery may have an impact on tissue degeneration of TMVI. Durability of mitral tissue prostheses is a concern in surgery, especially in younger patients. If transcatheter procedures aim to become a realistic alternative to surgery with expanded indications to treat a lower risk population, durability could become a major priority.

In the EVEREST II trial, when acute procedural results were optimal, repair with the MitraClip was durable for 5 years. However, with sub-optimal MR repair or MR recurrence, patient outcomes are poor. In this regard, successful acute reduction of MR is necessary to provide durable results of TMVRep, suggesting that patients eligible for reconstructive procedures should be treated preferably in experienced centres, similar as for mitral surgery.

A second unknown issue is whether TMVI patients will need or benefit from chronic anti-coagulation. Chronic anti-coagulation is associated with increased risk of haemorrhagic and thrombotic events. If chronic anti-coagulation is required, TMVI may be less attractive for low-risk cohorts, if not otherwise indicated.

Safety is key for an ‘early indication’ with transcatheter mitral procedures

Transcatheter mitral interventions are the natural evolution of modern mitral valve surgery; in the future, the indications may continue to move from a palliative target (improving symptoms, treating advanced and end-stage disease), towards the aim of improving prognosis. Early repair can restore life expectancy in DMR patients and lead to reverse remodelling in FMR patients. Outcomes tend to be poor if mitral valve surgery is excessively delayed, and it is likely that transcatheter mitral procedures may similarly be unable to impact the prognosis if unduly postponed.

In patients with severe MR and little or no symptoms, an excellent safety profile is mandatory if early repair is to be considered. Under these circumstances, like in surgery, a percutaneous repair may be favoured over TMVI due to potential disadvantages of a permanent implant. In this regard, there are numerous examples of therapies where safety has a dominant role over efficacy. For example, cardiac resynchronization therapy (CRT) in heart-failure patients is widely accepted given its excellent safety record. Even if clinical efficacy is achieved only in 60–70% of cases, patients are still referred for CRT because the chance of improvement is associated with minimal risk.

Conclusions: The future of transcatheter mitral interventions

At the moment, given the rapid evolution in device development, the complementary role of TMVRep and TMVI must be considered speculative. In general terms, TMVI is likely to be technically simpler and more reproducible in terms of MR reduction. However, durability, safety and disruption of adjacent cardiac structures remain important concerns. Transcatheter mitral valve repair is more complex and likely carries a steeper learning curve, and individual device may be applicable only in selected patients with less predictable MR reduction. Of note, the safety profile of TMVRep is generally excellent, and durability is likely to be robust in most patients when acute procedural success is achieved and the impact of TMVRep on physiology is minimal. Therefore, TMVRep may in the future aspire to an early treatment option, aiming at a prognostic approach, if randomized trials can demonstrate equipoise in long-term outcomes when compared with minimally invasive mitral valve repair.

In low-risk DMR patients, surgical repair will remain the standard of care for many years, with TMVRep and TMVI playing a role in high-risk or inoperable patients, who are not amenable for minimally invasive surgical mitral valve repair or eventually for TMVRep.

In patients with severe FMR, the role of surgery is less well established in patients who are not candidates for CABG, and most patients are treated medically. Transcatheter mitral valve repair may be a safe, palliative approach for such patients, and several large-scale randomized ongoing trials investigate the effectiveness of the MitraClip in this scenario. Transcatheter mitral valve implantation may potentially be a therapeutic option for patients with more advanced disease and severe anatomical and functional abnormalities, who are not eligible for valve repair.
In the future, careful patient selection will play a fundamental role in identifying specific patients most likely to benefit from TMVI vs. TMVRep vs. mitral valve surgery. Pre-procedural imaging will play a leading role to guide the complex process of patient selection. Some procedures may become complementary (i.e. surgical mitral annuloplasty and subsequent TMVI, or a combination of different TMVRep approaches in the same patients with staged procedures). As an example, the addition of transcatheter annuloplasty to Mitra-Clip therapy may improve acute efficacy and long-term durability. However timing, indications and sequence of procedures is speculative at the moment. Conversely, certain procedures may preclude others (i.e. following TMVI there are no options for further repair, and a transcatheter edge-to-edge repair may preclude future TMVI). The role of LV remodelling approaches has yet to be defined.

The development of TMVRep techniques has already taken 15 years, and transcatheter valve implantation technology will likely require more time until the devices and implant procedure are optimized. In the meantime, there may be room for both surgery and current TMVRep devices.

In the future, focus should be placed in designing and testing new devices, improving imaging guidance, and then carefully evaluate the risks and benefits of each promising approach in individual patients in varying clinical settings, ultimately relying on randomized trial evidence to guide clinical decision-making of the heart team.

Conflict of interest. F. Maisano is Consultant for Abbott Vascular, ValtechCardio, Medtronic, Edwards Lifesciences, St Jude, Apica, Founde of 4Tech, receives royalties from Edwards Lifesciences; O. Alfieri received research grants from Valtech Cardio; S. Banai is Medical Director of Neovasc Inc.; M. Buchbinder declares financial relationships with Abbott Vascular, Medtronic, BSC, MValve, Micardia; A. Colombo is Minor shareholder of Direct Flow Inc.; V. Falk received research grant support from Abbott Vascular, BSC, Edwards, WL Gore and is Consultant for : Abbott Vascular, BSC, Coherex, Edwards, Jena-Valve, DiahachiSankyo-Lilly, WL Gore; O. Franzen received speakers fee from Abbott Vascular, St. Jude, Medtronic, Astra Zeneca, Boston Scientific, Gore, Edwards, and research grant from Abbott Vascular, St. Jude, Medtronic; H. Herrmann is a consultant for and has guides Micro Interventional Devices; S. Kar declares financial relationships with Abbott Vascular, Atritech, AGA Medical, St Jude Medical, Circuite, Coherex, Gore; KH Kuck declares financial relationships with Biosense Webster, Stereotaxis, Medtronic, St. Jude, Cardiofocus, Abbott Vascular, Edwards, Mitralign, BMDSys, ACT, Maya, Apama, Toperia, Recor, Endosense, SynapticMed, CardiacImplants, Biotronik; G. Lutter is a consultant for Tendyne Inc.; M. Mack ave received travel reimbursements from Edwards Lifesciences; G. Nickenig declares financial relationships with AGA, AstraZeneca, Bayer, Berlin Chemie, Biotronik, BMS, Boehringer Ingelheim, Daichi Sankyo, Cordis, Medtronic, Novartis, Pfizer, Sanofi Aventis, Abbott Vascular; N. Piazza declares relationships with Medtronic, CardiAQ, HighLife, St. Jude Medical; M. Reisman declares relationships with Boston Scientific, Biostar Ventures; CE Ruiz declares relationships with Philips, Valtech, StJudeMedical, Sorin, Gore, Vascular Therapies, MitraAssist, Entourage, BioInspire; J. Schofer is Consultant for Guided Delivery System, Cardiac Dimension, Mitralign; L. Søndergaard is a consultant for CardiAQ; G. Stone declares relationships with Micardia and Guided Delivery Systems; M. Thomas declares relationships with Edwards Lifesciences, Boston Scientific; A. Vahanian is Consultant for Edwards, Medtronic, Abbott Vascular, ValtechCardio; J. Webb is Consultant for Neovasc Inc.; MB Leon declares relationships with Abbott Vascular, Boston Scientific, Edwards Lifesciences, Medtronic, Meril Lifescience, Micell, Laret, Elixir, GDS, Medinol, Mitralign, and Valve Medical.

References

