Intracoronary imaging of coronary atherosclerosis: validation for diagnosis, prognosis and treatment

Konstantinos C. Koskinas1, Giovanni J. Ughi2, Stephan Windecker1, Guillermo J. Tearney3,4, and Lorenz Räber1*

1Department of Cardiology, Bern University Hospital, Bern 3010, Switzerland; 2Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; 3Department of Pathology, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA; and 4Harvard-Massachusetts Institute of Technology Health Sciences and Technology, Cambridge, MA, USA

Received 30 July 2015; revised 5 November 2015; accepted 9 November 2015; online publish-ahead-of-print 11 December 2015

While coronary atherosclerosis is a leading cause of mortality, evaluation of coronary lesions was previously limited to either indirect angiographic assessment of the lumen silhouette or post mortem investigations. Intracoronary (IC) imaging modalities have been developed that allow for visualization and characterization of coronary atheroma in living patients. Used alone or in combination, these modalities have enhanced our understanding of pathobiological mechanisms of atherosclerosis, identified factors responsible for disease progression, and documented the ability of various medications to reverse the processes of plaque growth and destabilization. These methodologies have established a link between in vivo plaque characteristics and subsequent coronary events, thereby improving individual risk stratification, paving the way for risk-tailored systemic therapies and raising the option for pre-emptive interventions. Moreover, IC imaging is increasingly used during coronary interventions to support therapeutic decision-making in angiographically inconclusive disease, guide and optimize procedural results in selected lesion and patient subsets, and unravel mechanisms underlying stent failure. This review aims to summarize current evidence regarding the role of IC imaging for diagnosis and risk stratification of coronary atherosclerosis, and to describe its clinical role for guiding percutaneous coronary interventions. Future perspectives for in-depth plaque characterization using novel techniques and multimodality imaging approaches are also discussed.

Keywords
Intracoronary imaging • Atherosclerosis • Vulnerable plaque • Coronary interventions

Introduction

As coronary artery disease (CAD) remains a leading cause of mortality worldwide,1 growing interest has focused on characterizing in vivo coronary plaque, i.e. the anatomic substrate of clinical CAD manifestations. Coronary angiography depicts a two-dimensional silhouette of the lumen but cannot visualize the arterial vessel wall per se. In contrast, intracoronary (IC) imaging modalities allow for direct visualization and characterization of coronary plaque in vivo. Intravascular ultrasound (IVUS), the first modality introduced ≈25 years ago,2–4 provides tomographic imaging of the vessel wall. The armour of available tools was subsequently enriched with spectral analysis of IVUS radiofrequency (RF) backscattered signals and optical coherence tomography (OCT) to better characterize plaque morphology, as well as near-infrared spectroscopy (NIRS) to provide compositional (but no structural) information (Table 1). These modalities, along with novel techniques, have broadened our understanding of the natural history of CAD; evaluated the effect of medications on coronary atheroma; and assessed indices of plaque composition that were linked to subsequent cardiovascular events. Moreover, as percutaneous coronary interventions (PCIs) are applied for increasingly complex patient and lesion subsets, IC imaging has shown potential to optimize procedural results and identify mechanisms of stent failure, i.e. restenosis and thrombosis. In this review, we summarize evidence regarding the current role of the main IC imaging modalities (IVUS, OCT,
Intracoronary imaging modalities for coronary plaque characterization

Based on its ability to delineate the lumen and media-adventitia borders, IVUS allows for identification of plaque in angiographically non-stenotic lesions, quantification of atheroma burden, assessment of arterial remodelling, three-dimensional arterial reconstructions that enable measurement of IC rheology, and evaluation of factors associated with plaque progression or regression when performed serially. Commercially available IVUS probes operate at a frequency of 20 MHz. Higher frequencies (≥40 MHz) provide higher resolution and better image quality at the cost of decreased tissue penetration, although recent improvements in transducer design have reduced the negative impact of higher frequencies on penetration.

Grey-scale IVUS cannot directly assess plaque composition; echo-attenuated plaques correlate with fibroatheroma morphology by histology with high specificity but low sensitivity.

Spectral analysis of IVUS-RF backscattered signals allows for characterization of different tissue components. Image analysis systems based on post-processing of backscatter RF data include IVUS-virtual histology (IVUS-VH), iMAP, and integrated backscattered IVUS. Using IVUS-VH, plaque components are classified as necrotic core, fibrofatty tissue, fibrous tissue, or dense calcium; and lesions are classified as pathologic intimal thickening, fibrotic, fibrocalcific plaques, thick- or thin-capped fibroatheroma (TCFA) and macrophage accumulation. At the underexpanded stent level, IVUS-VH may also indicate neovessel formation.

In-stent neoatherosclerosis is of great clinical significance, and IVUS-VH has been validated against histology for accurate measurement of cap thickness and tissue composition (fibrous, calcific, lipid-rich/necrotic) and can also detect macrophage accumulation.

Table I Characteristics of intravascular ultrasound, RF-intravascular ultrasound, optical coherence tomography, and near-infrared spectroscopy for assessing plaque morphology and composition

<table>
<thead>
<tr>
<th></th>
<th>IVUS5</th>
<th>RF-IVUS7</th>
<th>NIRS12</th>
<th>OCT11</th>
</tr>
</thead>
<tbody>
<tr>
<td>General characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy source</td>
<td>Ultrasound</td>
<td>Ultrasound</td>
<td>Near-Infrared light</td>
<td>Infrared light</td>
</tr>
<tr>
<td>Pullback speed (mm/s)</td>
<td>0.5–1.0</td>
<td>0.5–1.0</td>
<td>0.5</td>
<td>10–40</td>
</tr>
<tr>
<td>Penetration (mm)</td>
<td>8–10</td>
<td>8–10</td>
<td>1–2</td>
<td>1–3</td>
</tr>
<tr>
<td>Spatial resolution (µm)</td>
<td>80–120</td>
<td>80–120</td>
<td>n/a</td>
<td>10</td>
</tr>
<tr>
<td>Requirement for blood clearance</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Real-time outcome</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Assessment of native plaque</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atheroma volume</td>
<td>Yes5,37–40</td>
<td>Yes7</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Cap thickness</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes11,19</td>
</tr>
<tr>
<td>Arterial remodelling</td>
<td>Yes5,24</td>
<td>Yes5,7</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Calcification</td>
<td>Good5</td>
<td>Good7</td>
<td>–</td>
<td>Modest11</td>
</tr>
<tr>
<td>Lipid pool/necrotic core</td>
<td>–</td>
<td>Good7,8</td>
<td>Good12,23</td>
<td>Good11,19</td>
</tr>
<tr>
<td>Imaging of non-superficial lipid-core plaque</td>
<td>–</td>
<td>Yes7</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Macrophage accumulation</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes11,20</td>
</tr>
<tr>
<td>Neovessels</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Modest15</td>
</tr>
<tr>
<td>Assessment of luminal integrity (erosion, rupture, tears)</td>
<td>Modest5</td>
<td>Modest7</td>
<td>–</td>
<td>Good11,17</td>
</tr>
</tbody>
</table>

Stent/scaffold imaging				
PCI guidance	Yes60,72,73,75,77	–	–	Yes60,83,85
In-stent neoatherosclerosis	Poor	Modest97	–	Good77,100
Underexpansion	Yes5,9,72,73,75	n/a	No	Yes81,82,93,94
Malapposition	Yes9,72,73,75	n/a	No	Yes81,82,93,94,96
Strut uncoverage	No	No	No	Yes92,93,95

IVUS, intravascular ultrasound; n/a, not applicable; NIRS, near-infrared spectroscopy; OCT, optical coherence tomography; RF-IVUS, radiofrequency IVUS.
accumulations, plaque rupture, micro-calcifications, neovascularization, and thrombus \(^{11}\) (Figure 1). Potential limitations include the inability to see behind red thrombus, and the need for displacement of blood for clear visualization of the artery wall which requires a non-negligible amount of contrast medium; insufficient flushing may give the false impression of thrombus or dissection flap. Caution is required for possible artefacts (e.g. tangential drop-out mimicking plaque rupture) and for differentiation of calcific vs. lipid-rich plaque.

Near-infrared spectroscopy (currently not widely available) is based on the differential absorption of light by organic molecules and has shown good specificity (90%) but modest sensitivity (50%) for lipid pool detection in coronary atheroma. \(^{12}\) Near-infrared spectroscopy is capable of identifying macrophage accumulations forming a line (arrows, E); microvessels (arrows, F); and a ruptured thin-capped fibroatheroma with minor white thrombus on top of the fibrous cap flap (arrowhead, G). Intravascular ultrasound image of a lesion containing a lipid pool, noted by the yellow colour in the surrounding circle (H) and the corresponding chemogram by near-infrared spectroscopy (I).

Figure 1 Multimodality imaging of a distal left anterior descending artery lesion by angiography (A), grey-scale intravascular ultrasound (B), intravascular ultrasound-virtual histology (C), and optical coherence tomography (D). The substantial proportion of necrotic core (red colour) with confluence at the luminal site for \(>30^\circ\) is consistent with an intravascular ultrasound-virtual histology thin-capped fibroatheroma (C). Optical coherence tomography shows a signal-rich layer and an underlying signal-poor region with high light attenuation, suggestive of lipid/necrotic core with an overlying fibrous cap with minimal thickness 40 \(\mu\)m (arrow), consistent with a thin-capped fibroatheroma (D). In different lesions, optical coherence tomography is capable of visualizing macrophage accumulations forming a line (arrows, E); microvessels (arrows, F); and a ruptured thin-capped fibroatheroma with minor white thrombus on top of the fibrous cap flap (arrowhead, G). Intravascular ultrasound image of a lesion containing a lipid pool, noted by the yellow colour in the surrounding circle (H) and the corresponding chemogram by near-infrared spectroscopy (I).

In vivo assessment of vulnerable plaque and clinical implications

Approximately two-thirds of lethal coronary thrombosis is attributed to ruptured TCFAs. \(^{15,16}\) Accordingly, intact TCFAs are by inference considered vulnerable plaques at high risk to rupture and trigger acute coronary syndromes (ACS). \(^{15}\) In addition, superficial erosion is increasingly recognized as the underlying mechanism in a proportion of ACS. \(^{17}\) Because current modalities cannot differentiate features of plaques prone to undergo superficial erosion, and until we better understand the natural history of 'erosion-prone' lesions, interest continues to focus on the in vivo identification of rupture-prone TCFAs. Intracoronary imaging modalities can detect vulnerable plaques and predict subsequent clinical events to some extent; whether these properties translate into improved clinical outcomes is not yet established.

Intracoronary imaging for detection of presumed vulnerable plaque

While current IC imaging modalities can evaluate indices of vulnerable plaques in vivo fairly accurately, no single modality alone can simultaneously assess cap thickness, necrotic core size, and the
magnitude of inflammation, i.e. the combination of histological TCFA characteristics. While necrotic core by IVUS-VH correlates with human histology, characterization of TCFA phenotype has not been validated and is inferential (defined as necrotic core abutting the lumen) since critical cap thickness of ruptured autopsied plaques (<65 or <54 μm) is far below the resolution of IVUS (~200 μm). Only OCT is capable of measuring cap thickness; however, cut-offs associated with rupture may differ from autopsy due to plaque shrinkage in pathology specimens. Validation of TCFA by OCT against histology has shown excellent sensitivity (100%) and specificity (97%) but limited positive predictive value (41%).

Macrophage accumulations can be visualized by OCT as signal-intense punctuate regions with strong signal attenuation (Figure 1E); quantification of macrophage accumulations within fibroatheroma caps has shown good correlation with human histology. The specificity of detecting macrophages defined as ‘bright spots’ (not necessarily with shadowing) at any location in the artery wall is lower due to components seen elsewhere in the intima that also appear as bright spots in OCT (e.g. cellular fibrous tissue, calcium-fibrous tissue interfaces, micro-calculifications, cholesterol crystals). Optical coherence tomography can also detect microvessels (Figure 1F) which have been correlated with plaque progression and vulnerability. The ability of NIRS to identify fibroatheromas is modest and enhanced when combined with IVUS; NIRS can accurately detect lipid pools but cannot pinpoint TCFA in the absence of anatomical information. Moreover, IC imaging can capture features of rupture-prone lesions including positive remodelling and spotty calcification (IVUS); complex plaque morphology with evidence of previous rupture (IVUS), as well as plaque elasticity and deformability (IVUS palpography). Subclinical rupture is not infrequent in patients presenting with ACS or stable CAD; among ruptured lesions, IVUS and OCT correlates of clinical manifestation as an ACS include larger plaque burden, greater luminal narrowing, and more thrombus.

Intracoronary imaging for prediction of clinical events

The PROSPECT study using three-vessel IVUS in ACS patients showed that non-culprit lesions combining plaque burden ≥70%, minimal lumen area (MLA) ≤4 mm², and TCFA phenotype by IVUS-VH had an 11-fold higher risk of triggering subsequent major adverse cardiovascular events (MACE) compared with lesions without these characteristics. Intravascular ultrasound-virtual histology TCFA phenotype alone was associated with a three-fold higher risk than non-TCFA lesions to result in MACE, most commonly rehospitalization due to angina with very infrequent hard endpoints. Consistent findings were reported by the single-centre VIVA and ATHEROREMO-IVUS studies. It is notable that the identified lesion-specific characteristics did not correlate with classical angiographic and clinical risk predictors, indicating incremental prognostic benefit, but also that they were highly prevalent (~40–50% of patients) and had high negative, but low positive predictive value for MACE prediction (Figure 2). Based on the high

<table>
<thead>
<tr>
<th>Study</th>
<th>Modality</th>
<th>Lesion characteristic(s)</th>
<th>Clinical endpoint</th>
<th>Positive predictive value</th>
<th>Negative predictive value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROSPECT</td>
<td>IVUS & IVUS-VH</td>
<td>PB ≥70% & MLA ≤4 mm² & IVUS-VH TCHA</td>
<td>MACE</td>
<td>18%</td>
<td>98%</td>
</tr>
<tr>
<td>ATHEROREMO IVUS</td>
<td>IVUS & IVUS-VH</td>
<td>PB ≥70% & MLA ≤4 mm² & IVUS-VH TCHA</td>
<td>MACE</td>
<td>23%</td>
<td>93%</td>
</tr>
<tr>
<td>PREDICTION</td>
<td>IVUS & ESS</td>
<td>PB ≥58% & Low ESS < 1.0 Pa</td>
<td>PCI</td>
<td>41%</td>
<td>92%</td>
</tr>
<tr>
<td>ATHEROREMO NIRS</td>
<td>NIRS</td>
<td>LCBI ≥43</td>
<td>MACE</td>
<td>12%</td>
<td>99%</td>
</tr>
</tbody>
</table>

Figure 2 Summary of the positive and negative predictive values of intracoronary imaging–derived variables for prediction of clinical outcomes in the PROSPECT, ATHEROREMO-IVUS, PREDICTION, and ATHEROREMO-NIRS studies. ESS, endothelial shear stress; LCBI, lipid-core burden index; MACE, major adverse cardiac events; MLA, minimal lumen area; PB, plaque burden; PCI, percutaneous coronary interventions.
accuracy to exclude, but limited potential to predict future events when using non-serial IC imaging, pre-emptive interventional treatment of presumed high-risk lesions cannot be supported at this stage. The PREDICTION study demonstrated the incremental value of low baseline shear stress to predict clinically relevant lesion progression requiring PCI. In ATEROREMO-NIRS, a baseline value of lipid-core burden index (LCBI, the ratio of yellow pixels within the analysed segment divided by all viable pixels) above vs. below the median was associated with four-fold higher risk of MACE throughout 1 year, yet again with low positive predictive value. Prospective OCT studies investigating the predictive merit of minimal cap thickness and TCFA detection are currently not available.

In addition to asymptomatic, non-culprit lesions, detection of TCFA by IVUS-VH or lipid-core plaques by NIRS in lesions planned for PCI can identify patients at high risk for periprocedural complications [myocardial infarction (MI), distal embolization]. Preventive clinical strategies and dedicated embolic protection devices have been proposed based on these imaging findings but have not yet entered routine clinical practice. Moreover, identification of plaque rupture vs. erosion by OCT as the triggering mechanism of ACS has been associated with worse clinical outcomes. These results, however, require confirmation considering the atypically high reported event rates as well as the inability of OCT (despite its high resolution) to detect endothelial denudation and absence of endothelial cells, i.e. defining characteristic of plaque erosion. In vivo evidence of erosion remains indirect, based on the presence of thrombus and absence of fibrous cap rupture—an approach likely conducive to some imprecision.

Assessment of plaque progression/regression by intracoronary imaging

Evidence and determinants of plaque volume regression by intravascular ultrasound

Serial IVUS progression/regression studies are presented in Supplementary material online, Tables S1 and S2. Among different measures of disease burden, change in per cent atheroma volume (PAV, i.e. percentage of vessel wall volume occupied by atheroma) is recommended due to smaller variability compared with other endpoints that may be sensitive to pullback length differences. In patients treated with statins or other medications with anti-atherosclerotic properties (ezetimibe; darapladip; reconstituted HDL; antihypertensive drugs; insulin-sensitizers in diabetic patients), IVUS studies have shown the absence of progression and even modest regression with high-intensity statin therapy, documented as PAV reduction by −1% with atorvastatin 80 mg and by −0.8 to −1.2% with rosuvastatin 40 mg. The finding of plaque progression in one-fifth of patients despite LDL-cholesterol (LDL-C) levels <70 mg/dL and in at least one-third of patients receiving high-intensity statin therapy likely reflects the multifactorial nature of the disease as well as limitations of currently available pharmacological treatments. Factors associated with statin-mediated plaque regression include high baseline PAV, and lower on-treatment levels of LDL-C and C-reactive protein.

Clinical significance of plaque volume regression

Large global atheroma burden by IVUS has been identified as a predictor of subsequent clinical events. The clinical significance of serial changes of PAV remains elusive. In a pooled analysis of six serial IVUS studies including >4000 patients, PAV progression was an independent predictor of MACE, a finding that was driven by repeat revascularizations (not clearly attributable to previously imaged segments) and not by MI or mortality. Although high-intensity statin regimens can reverse the process of IVUS-defined anatomic plaque growth, a clear association of plaque regression with improved clinical outcomes has yet to be determined.

Intracoronary imaging to detect reversal of plaque vulnerability

While statins effectively reversed high-risk plaque characteristics in experimental and human histological studies, IVUS-VH studies have shown stabilization, but no net reduction of necrotic core in response to statins or non-statin agents. The absence of clinical benefit with one regimen (darapladip) that was associated with stabilization of necrotic core (a secondary endpoint of the IBIS-2 study) suggests that the use of IVUS-VH and other imaging-based endpoints as surrogates of clinical outcomes requires caution. In contrast, usual-dose atorvastatin resulted in fibrous cap thickening and reduction of macrophage accumulations as assessed by serial OCT—with the methodological caveat of manual cap thickness measurement. Similarly, maximal LCBI of obstructive lesions by NIRS decreased in response to high-dose rosuvastatin (Figure 3).

Temporal evolution of vulnerable plaques by intracoronary imaging

The ability not only to detect a presumed vulnerable plaque at a single time-point but also to predict its subsequent biological behaviour is less well established, yet clinically highly relevant. The temporal evolution of plaque morphology by IVUS-VH has been assessed only in small patient cohorts and provided conflicting results. One study with predominantly stable CAD patients reported that 75% of IVUS-VH TCFA subsequently regressed to lower-risk phenotypes; factors associated with persistent IVUS-VH TCFA morphology included proximal localization, larger plaque burden and lesion length. In contrast, other studies demonstrated temporal stability of IVUS-VH lesion morphology, even in the presence of high-intensity statin therapy. Keeping with animal models associating local haemodynamic factors—in particular, low endothelial shear stress—with subsequent development of TCFA with highest risk characteristics, baseline shear stress has been associated in humans with greater subsequent plaque progression and necrotic core expansion by IVUS-VH. Assessment of local haemodynamics holds substantial promise for prediction of vascular behaviour but is currently limited by the time-consuming and labour-intensive processes involved.
Intracoronary imaging for guiding coronary interventions

While IC imaging for characterization of asymptomatic, non-culprit lesions is currently a research tool with potential for clinical utility, IVUS and OCT are used increasingly to assess angiographically ambiguous lesions, guide and optimize PCI, and determine mechanisms of stent failure (Figure 4).

Intracoronary imaging to enhance decision-making in angiographically ambiguous lesions

In daily interventional practice, operators are frequently confronted with dilemmas when angiography alone is insufficient to establish the clinical significance of a given lesion. Although these scenarios are difficult to capture in scientific studies, IC imaging can be valuable for decision-making in clinically challenging, angiographically inconclusive cases. While there is no concrete evidence for direct comparisons, OCT is at least equally valuable and often superior to IVUS owing to its higher resolution,55,56; however, the inability of OCT probes to achieve sufficient flushing through severely stenotic vessels, to reach distal lesions, or to assess large-calibre segments (e.g. ostial left main lesions) also require consideration. Figure 5 shows representative examples from daily clinical practice, illustrating how IC imaging may affect the therapeutic strategy.

Intravascular ultrasound for assessment of intermediate non-left main lesions

Defining the haemodynamic relevance of angiographically intermediate lesions may be challenging. While an MLA ≥ 4 mm² signifies non-left main lesions where PCI may be safely deferred,57 substantially different cut-offs have also been proposed.58 Currently, haemodynamic assessment with fractional flow reserve (FFR) or non-invasive ischaemia testing, and not morphometric assessment by IVUS or OCT,59 is preferred for evaluation of intermediate non-left main lesions.60

Intravascular ultrasound for evaluation of left main lesions

Angiographic assessment of left main disease may be hampered by the short length, absence of clear reference segment, and possible reverse tapering. Angiographic evaluation of intermediate left main lesions is associated with a high intra- and inter-observer variability, is frequently unreliable in ostial lesions,61 and cannot accurately define circumferential and longitudinal plaque distribution in distal and bifurcation lesions. The use of FFR is challenging in left main stenoses, as measurements may be falsely raised due to dampened catheter pressure (particularly in ostial lesions) or co-existing downstream disease (particularly in the LAD).62 Currently, IVUS assumes class IIa indication to assess the severity of unprotected left main lesions.63 An MLA of 7.5 cm² is the lower range for a normal left main stem.64 Minimal lumen area <5.9 mm² by IVUS correlated with FFR-defined ischaemia in one study,65 although lower cut-offs (<4.8 mm²) best predicted FFR <0.80 among Asian patients—likely reflecting ethnicity-related differences.66 Currently, an MLA >6 mm² appears to be a safe cutoff for deferring PCI.67 In distal left main and bifurcation lesions, IVUS can define longitudinal plaque distribution; IVUS pullbacks from both the LAD and LCX may be of additional value to plan the procedure.68

Intravascular ultrasound for percutaneous coronary intervention guidance and optimization

Prior to stenting, IVUS can assess reference lumen dimension at the proximal and distal non-diseased reference sites, and also (unlike OCT) the external elastic membrane area at the site of minimal
Figure 4 Schematic presentation of the current utility and potential implications of intracoronary imaging for guidance of coronary interventions and characterization of native atherosclerotic plaque.
lumen diameter. Information regarding lesion length, presence, and extent of calcification can optimize selection of stent size and stenting strategy. Following implantation, IVUS can detect correctable abnormalities related to the stent and underlying vessel wall which have been associated with the risk of restenosis or thrombosis including stent underexpansion, malapposition, edge dissection, and geographic plaque miss. Although different criteria have been proposed, minimal stent area, the average proximal and distal reference lumen area is a comprehensive, widely applied cut-off for relevant underexpansion. Uniform, standardized criteria for PCI optimization in relation to IVUS findings remain to be established and currently represent a great unmet need.

In the era of bare-metal stents (BMS), IVUS guiding was associated with reduced restenosis and lower revascularization rates with no effect on mortality. In the era of drug-eluting stents (DESs), some underpowered studies showed no clinical benefit of IVUS guidance despite larger post-intervention stent dimensions, suggesting that the beneficial impact of IVUS guidance might be camouflaged by the overall improved efficacy of PCI with DES. Earlier randomized studies have not been able to demonstrate superiority of routine IVUS guidance compared with angiography-guided PCI regarding mortality, MACE, or stent thrombosis, likely because of small sample sizes and the inclusion of patients with predictably low benefit from IVUS guidance. Recently, however, the superiority of IVUS-guided vs. angiography-guided PCI was shown in the IVUS-XPL randomized trial including 1400 patients treated with DES for long coronary lesions. The study showed that the use of IVUS-guided everolimus-eluting stent implantation resulted in a significant reduction of MACE, a difference that was driven by a reduction in target lesion revascularization and not cardiac mortality or MI. Along the same lines of the latter trial, observational studies (with inherent biases and limitations) reported consistent reductions

Figure 5 Unclear angiographic findings unravelled by intracoronary imaging. (A) Angiography shows a ‘fold’ at the ostium of the left anterior descending artery, only visible in one single angiographic protection, corresponding to an eccentric stenosis with significant lumen narrowing as evidenced by optical coherence tomography. (B) Discrete haziness in the mid-left anterior descending artery in a 30-year-old male with ventricular fibrillation and absence of ischemic ECG changes. Optical coherence tomography suggests the presence of erosion on top of a fibrous plaque, enabling the diagnosis of acute coronary syndromes-induced ventricular fibrillation. (C) Diffuse haziness in the mid-left anterior descending artery of a 31-year-old male. The multi-hole appearance in optical coherence tomography unravels recanalized thrombus. (D) Haziness in the right coronary artery suggestive of either thrombus or calcium. Optical coherence tomography shows evidence of calcification protruding in the lumen. (E) Subtotal stenosis of a diagonal branch in a 28-year-old female without coronary risk factors raised suspicion of spontaneous dissection or thrombo-embolic origin. Optical coherence tomography, however, indicates the presence of atherosclerosis with a normal mid-left anterior descending artery (red inset) and a severely stenotic thick-cap fibroatheroma in the diagonal branch. (F) Angiographic image of an intermediate ostial left main lesion (arrowhead, left) and corresponding intravascular ultrasound at the ostium, showing an eccentric plaque with minimal lumen area 4.8 cm² indicating relevant ostial stenosis.
Intravascular ultrasound-guided left main percutaneous coronary intervention

The clinical value of IVUS-guided PCI appears particularly evident in left main interventions. In a recent observational study of 1670 patients treated with DES, IVUS guidance was associated with reduced cardiac death, MI, revascularization, and stent thrombosis throughout 3 years. The observational MAIN-COMPARE study showed a trend for lower mortality, but intriguingly no difference in MI or revascularization associated with IVUS guidance, thereby not providing mechanistic explanation for the observed benefit. Two randomized trials, EXCEL (NCT01205776) and NOBLE (NCT01496651), are currently underway comparing PCI vs. CABG in unprotected left main disease; IVUS guidance is recommended per protocol and important insights are expected.

Optical coherence tomography-guided percutaneous coronary intervention

Due to its high resolution, OCT is more accurate than IVUS for visualizing subtle stent- or lumen-related morphologies including edge and in-stent dissection, malapposition, residual thrombus, and tissue prolapse. While small post-intervention stent area and irregular protrusion have been associated with subsequent mid-term clinical outcomes, subtle abnormalities (malapposition with short strut-vessel distance, minor edge dissection) are likely not significant and possibly do not require correction, but this warrants definitive evaluation. Similar to IVUS, standardized criteria for OCT-guided PCI optimization remain to be defined. Only one observational study has compared OCT- vs. angiography-guided PCI and reported reduced cardiac death and MACE in patients interrogated with OCT on the background of relevant methodological limitations. The non-randomized ILLUMIEN-I study reported that pre- and post-stenting OCT changed the procedural strategy in 57 and 27% of cases, respectively. One small randomized study reported more underexpansion and greater residual reference segment stenosis with OCT- vs. IVUS-guided PCI. The ongoing randomized OPINION trial (NCT01873027) directly compares IVUS vs. OCT guidance with respect to clinical outcomes following PCI with DES; preliminary results indicate comparable in-segment minimal lumen diameter after PCI, and 1-year clinical outcomes are expected soon (Prof. T. Akasaka, personal communication).

Intracoronary imaging to guide percutaneous coronary intervention with bioresorbable scaffolds

The role of IC imaging is particularly relevant with the use of bioresorbable scaffold (BRS). Meticulous attention to the implantation technique appears to be more relevant compared with metallic DES, potentially related to greater strut thickness, reduced radial force, and less tolerance to post-dilatation. The use of IC imaging may be a valuable adjunct for optimal scaffold size selection prior to implantation and to identify sub-optimal expansion and apposition or scaffold fracture after the implantation. Observational studies confirmed that the use of imaging-assisted BRS implantation can provide similar post-procedural results compared with metallic DES. While appropriately designed studies are required to establish the role of IC imaging for BRS implantation, we believe that routine use of IC imaging may be a reasonable strategy until further improvements of BRS devices with greater procedural flexibility and less rigorous performance standards become available.

Intravascular ultrasound and optical coherence tomography for determining the mechanism of stent failure

Intravascular ultrasound and OCT both assume class IIa indication to assess mechanical stent problems responsible for in-stent restenosis or stent thrombosis. While restenosis rates have decreased substantially with new-generation DES, the investigation of mechanisms causing stent or scaffold thrombosis is a subject of growing interest. Intracoronary imaging studies consistently identified under-expansion and large dissections as correlates of early (acute/ subacute) thrombosis, and malapposition and uncovered stent struts—which can be visualized with OCT—as mechanisms of late and very late thrombosis. Malapposition can either be persistent (i.e. implantation-related) or late acquired; a distinction is impossible without serial imaging. While the role of late acquired malapposition in triggering thrombotic events in not disputed, the impact of persistent malapposition remains controversial. Yet it is unlikely that a relevant role is limited to the acquired category only. Neoatherosclerosis, i.e. atherosclerosis formation in the nascent neointima, has been documented in vivo using OCT and IVUS-VH; it correlates with native disease progression (thus suggesting similar pathophysiological mechanisms), and has been identified as an important cause of very late stent thrombosis. Further insights are expected from PRESTIGE (NCT01300507), the largest European stent thrombosis registry to date. With the increasing use of BRS, interest in the investigation of device failure is high as the scaffold resorption process per se may entail new pathomechanisms such as late scaffold disintegration in the presence of insufficient scaffold coverage by neointima.

New developments and future directions in intracoronary imaging

Combination of intravascular ultrasound/ optical coherence tomography with near-infrared spectroscopy in a single catheter

Combined structural imaging with IVUS and plaque composition assessment with NIRS has been suggested to enhance coronary plaque characterization. A hybrid IVUS–NIRS catheter is clinically
available and showed greater accuracy than IVUS or NIRS alone for the detection of plaques containing necrotic cores or large lipid pools.23 A combined OCT-NIRS catheter with similar characteristics as current OCT technology has been proposed,101 and first human use of IC OCT-NIRS is expected in the near future.

Combination of optical coherence tomography and intravascular ultrasound in a single catheter

Intravascular ultrasound and OCT are, in many aspects, complementary for coronary plaque characterization (Table 1). The use of two separate catheters requires a time-consuming image co-registration process that may be subject to inaccuracies. A dual-modality OCT–IVUS catheter was introduced,102 combining high resolution for cap thickness measurement while preserving deep penetration for necrotic core and plaque volume measurement \textit{ex vivo} in human coronary arteries and \textit{in vivo} in animal models.103 Remaining challenges for clinical use of the device include conformation of the imaging rate of IVUS to the higher speed of second-generation OCT, image fusion and display, and configuration of catheter size and mechanical properties for safe use in humans.

Advanced optical coherence tomography imaging technology

Novel approaches for polarization sensitive OCT (PS-OCT) catheters can provide measures of tissue birefringence and light depolarization in the context of microstructural morphological OCT images. In cadaver coronary arteries, PS-OCT assessed microstructural arrangement of fibrous cap collagen104—a critical determinant of lesion stability.15 Studies validating PS-OCT are currently ongoing. In addition, spectroscopic OCT (SOCT) has been proposed for depth-resolved detection of lipid from OCT data.105

One-micron resolution imaging

Our current understanding of human CAD has been limited by an inability to observe cellular and extracellular components \textit{in vivo}. One-micron resolution OCT (μOCT) uses a very broad bandwidth light source (i.e. 650–950 μm), common path spectral-domain OCT and relatively large numerical aperture, yielding an axial and spatial resolution of 1 and 2 μm, respectively.106 In cadaver human coronary arteries, μOCT enables clear visualization and quantification of \textit{in situ} macrophages and cholesterol crystals (Figure 6A), as well as smooth muscle cells, platelet aggregation, and micro-calcifications.106 The development of μOCT for \textit{in vivo} human use is currently ongoing, with an expectation of first-in-man use of a first-generation probe in the near future.

Combination of optical coherence tomography with near-infrared fluorescence in a single catheter

The use of exogenous agents (e.g. indocyanine green) allows stand-alone near-infrared fluorescence (NIRF) to detect plaque...
inflammation and enzymatic activity in vivo. To overcome the lack of structural information, an all-optical system for dual-modality OCT and NIRF with the same size and characteristics as a clinical OCT catheter was recently used for in vivo imaging of coronary-sized vessels in animal models. Targeted molecular imaging in human patients is expected to be feasible with NIRF in the near future. Near-infrared autofluorescence (NIRAF) is an endogenous signal that was elevated in human aortic and coronary cadaver plaques with necrotic cores. A clinical OCT-NIRAF system has been developed and enabled the acquisition of OCT images synchronized with plaque autofluorescence ex vivo (Figure 6B and C). Further developments (e.g. increasing IVPA imaging speed) are required for this hybrid modality to be used clinically and exogenous agents (i.e. IVPA nanoparticles) for human use are currently under evaluation.

Combination of intravascular ultrasound with intravascular photoacoustics

Intravascular photoacoustics (IVPA) can assess light absorption properties of tissue, providing information about its chemical composition in a depth-resolved, cross-sectional image format. Recent ex vivo studies suggested the ability to determine plaque composition (e.g. lipid) and, through the use of exogenous contrast agents, inflammation (Figure 6D–F). Further developments (e.g. increasing IVPA imaging speed) are required for this hybrid modality to be used clinically and exogenous agents (i.e. IVPA nanoparticles) for human use are currently under evaluation.

Combination of intravascular ultrasound with autofluorescence lifetime imaging in a single catheter

Multispectral autofluorescence lifetime imaging (FLIm) allows the assessment of compositional aspects of the artery wall (collagen, elastin, cholesterol) with a penetration depth of ~200 μm (Figure 6G and H). An IVUS–FLIm catheter was recently designed. The strength of this technology to quantify multiple relevant plaque constituents makes it a promising technology for plaque imaging, although several issues need to be addressed for clinical use.

Conclusions and future perspectives in intracoronary imaging

Intracoronary imaging of native atherosclerosis can quantify in vivo the global burden of CAD and identify individual lesions with presumed high-risk morphology. However, the high prevalence of imaging-defined TCFAs (with a usually uncomplicated long-term course) inevitably raises the question how vulnerable plaque detection can shift the paradigm to guiding patient management. Currently, more evidence is needed to assess whether the information obtained by existing as well as emerging IC imaging adds incrementally and cost-effectively to clinical and non-invasively derived variables for improvement of clinical outcomes. Because no single modality is likely to acquire the entire spectrum of processes that contribute to adverse coronary events, we believe that the greatest promise for attaining sufficient predictive ability to justify preemptive coronary interventions in asymptomatic lesions lies with the development of multimodality imaging technologies. In the next 3 years we expect the results of two studies [PROSPECT II (NCT02171065) and Lipid Rich Plaque (NCT02033694)] currently evaluating a strategy of prophylactic interventions in high-risk plaques. Within the same timeframe we foresee that in-depth morphologic plaque characterization using advanced and hybrid modalities (IVUS-OCT, OCT-NIRS, µOCT) will be feasible in human patients, and the clinical relevance of the expected imaging insights will be tested with regard to prognostication and possibly patient management.

Regarding interventional procedures, IVUS currently assumes class IIa and OCT a class IIb indication to optimize stent implantation in selected patients; real-life penetration ranges from 5 to 10% in Europe to > 70% in Japan. Previous randomized trials established the ability of IVUS to improve procedural results but failed to demonstrate significant improvement of clinical outcomes, whereas a recent landmark trial was able to show the superiority of IVUS- over angiography-guided PCI for reduction of one-year target-lesion revascularization. Due to the ease of use and interpretation of stent-related findings, we believe that OCT is likely to be the favourable technique in future trials. Until recent favorable evidence is corroborated by subsequent trials and likely integrated into official recommendations, IC imaging will be indicated to facilitate decision-making in patients with unclear angiographic findings, guide-selected interventions and optimize the final PCI result particularly with left main or complex bifurcation lesions, BRS implantation and possibly high-risk ACS patients (Table 2). Despite the increasing appreciation of the incremental value of IC imaging over angiography for PCI optimization, the Achilles heel of catheter-based imaging currently is that the relevance of imaging findings when left uncorrected is not always clearly defined; therefore, criteria for corrective measures remain in part subjective and are left to the discretion of the individual operator. Future studies need to focus on determining specific criteria (e.g. thresholds of malapposition distance or dissection length) with proven efficacy to improve procedural and longer-term clinical PCI outcomes.

Table 2 Summary of clinical scenarios where the use of intracoronary imaging is more likely to be useful

<table>
<thead>
<tr>
<th>Diagnostic evaluation</th>
<th>• Detection of stent-related mechanical problems</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Assessment of mechanisms of stent failure</td>
</tr>
<tr>
<td></td>
<td>• Unclear angiographic findings</td>
</tr>
<tr>
<td></td>
<td>• Left main stenoses</td>
</tr>
<tr>
<td></td>
<td>• Complex bifurcation lesions</td>
</tr>
<tr>
<td>PCI guidance and optimization in selected patients</td>
<td>• Unprotected left main lesions</td>
</tr>
<tr>
<td></td>
<td>• High-risk acute coronary syndromes</td>
</tr>
<tr>
<td></td>
<td>• Insufficient angiographic image acquisition (e.g. obesity, extreme angulations etc.)</td>
</tr>
<tr>
<td></td>
<td>• Implantation of bioresorbable scaffolds</td>
</tr>
</tbody>
</table>

Indications are supported by current guidelines when applicable, or otherwise reflect the authors’ views in the absence of sufficient evidence to support definitive recommendations.
Supplementary material

Supplementary material is available at European Heart Journal online.

Authors’ contributions

L.R. and K.K. conceived and designed the research; K.K., G.U. and L.R. drafted the manuscript; S.W. and G.T. made critical revision of the manuscript for key intellectual content.

Acknowledgements

We thank Dr Stefan Stortecky, Bern University Hospital, Switzerland, for providing images for Figure 5A and Drs Takenori Domei and Shoichi Kuramitsu, Kokura Memorial Hospital, Japan, for providing the images for Figure 5F.

References

Intracoronary imaging of coronary atherosclerosis

71. Windecker S, Koskinas KC, Siomitis GC. Bioresorbable scaffolds vs. metallic drug-eluting stents: are we getting any closer to a paradigm shift? J Am Coll Cardiol 2015; in press.

