Animal models for atrial fibrillation: clinical insights and scientific opportunities

Kunihiro Nishida1, Georggia Michael1, Dobromir Dobrev2, and Stanley Nattel1*

1Department of Medicine, Montréal Heart Institute, Université de Montréal, Montréal, 5000 Belanger Street East, Montreal, Quebec, Canada H1T 1C8; and 2Department of Pharmacology and Toxicology, Dresden University of Technology, Dresden, Germany

Received 24 September 2009; accepted after revision 27 September 2009; online publish-ahead-of-print 29 October 2009

Atrial fibrillation (AF) is the most common arrhythmia in clinical practice. A variety of animal models have been used to study the pathophysiology of AF, including molecular basis, ion-current determinants, anatomical features, and macroscopic mechanisms. In addition, animal models play a key role in the development of new therapeutic approaches, whether drug-based, molecular therapeutics, or device-related. This article discusses the various types of animal models that have been used for AF research, reviews the principle mechanisms governing atrial arrhythmias in each model, and provides some guidelines for model selection for various purposes.

Keywords
Arrhythmias • Anti-arrhythmia therapy • Anti-arrhythmic drugs • Ablation • Re-entry • Triggered activity • Transgenic • Knockout

Introduction
Atrial fibrillation (AF) contributes to significant cardiovascular morbidity and mortality.1 Despite the availability of numerous therapeutic agents, the available treatments have significant limitations,2,3 and AF continues to be a clinical challenge. Several experimental models have been developed in which AF pathophysiology may be studied; however, many important questions concerning mechanisms underlying AF remain unanswered.4 The advantages of using animal models over clinical samples are manifold: full access to tissue and cells from large regions of the heart and the ability to perform high-density epicardial or even optical mapping experiments, to name but a few. Knowledge gained from experimental models complements clinical studies and may lead to therapeutic advances. This article reviews animal models available for studying AF, presents their contribution to the body of knowledge regarding underlying mechanisms, and discusses how these models may be used.

Insights into mechanisms underlying atrial fibrillation
Moe et al.’s5 multiple wavelet hypothesis and Allessie et al.’s6 leading circle concept have long been dominant theories of mechanisms underlying AF, in which multiple transient wavelets perpetuate AF, with a balance between new wavelet formation and wavelet extinction allowing the arrhythmia to be maintained. The number of coexisting wavelets depends on the balance between atrial size and wavelength, i.e. the product of the refractory period and the conduction velocity.6 However, many recent studies support the concept that driver regions, maintained by single or multiple spiral waves or rapidly discharging ectopic foci, perpetuate AF, with fibrillatory conduction contributing to activation irregularity.7 Recent observations suggest that sources in the thoracic veins, particularly the pulmonary veins (PVs), play important roles in AF initiation and maintenance.8

The basic mechanisms underlying AF are presented in Figure 1. Rapid ectopic foci arise by abnormal automaticity originating in regions other than the sinus node, or as a result of early (EADs) or delayed after-depolarizations (DADs). Early after-depolarizations involve the reactivation of L-type Ca2+ channels during prolonged repolarization, whereas DADs appear when Ca2+ is released from the sarcoplasmic reticulum (SR) during diastole. Diastolic Ca2+ rises activate the Na+-Ca2+ exchanger (NCX), which carries three Na+ ions into the cell in exchange for each Ca2+ transported out, causing net inward movement of one positively charged ion per cycle and depolarizing the cell. Oscillations in membrane potential that surpass the threshold potential trigger ectopic beats, and ectopic firing provides the critical premature activation that initiates re-entrant activity, in the form of either a single rotor or multiple rotors or wavelets that sustain fibrillation. Alternatively, repeated rapid firing from a focal
source can be conducted irregularly through the atrial substrate, producing fibrillatory activity. The very rapid atrial rate resulting from re-entry or triggered activity in turn abbreviates the effective refractory period (ERP), which perpetuates re-entrant activity and promotes AF. Ischaemia, inflammation, fibrosis, and atrial dilatation also contribute to the AF substrate, and spatial variability of refactoriness is another important determinant of sustained episodes of AF.

Large animal models

Atrial fibrillation has been studied in large animal models with rate-related electrical remodelling or with atrial-structural remodelling, following acute atrial insults, and in the presence of autonomic nervous system modulation. Table 1 summarizes these models and the corresponding clinical paradigms.

Rate-related remodelling

Wijffels et al. first demonstrated experimentally that maintained AF alters atrial electrophysiology to enhance AF vulnerability and persistence, hypothesizing that AF begets AF. In their goat model, the authors demonstrated that atrial burst pacing led to atrial ERP shortening, enhanced perpetuation of AF, and lack of ERP adaptation to rate changes. The authors coined the term ‘atrial remodelling’ to describe AF-promoting changes caused by AF itself. Remodelling induced by AF is virtually indistinguishable from that produced by any rapid atrial tachyarrhythmia, which has come to be known as ‘atrial tachycardia (AT)-induced remodelling’. Atrial tachycardia remodelling has since been demonstrated in dogs, sheep, and pigs. Rapid atrial rates cause heterogeneous remodelling of refractoriness, increased vulnerability to AF induction, and increased arrhythmia persistence. Only ATs with rates ≥300 bpm promote AF vulnerability and maintenance in dogs, suggesting that the clinical association between paroxysmal ATs and AF is not due to AT remodelling alone. Atrial tachycardia models are particularly useful for evaluating drugs that may prevent electrical remodelling.

Atrial tachycardia remodelling alters ionic currents and gene expression of ion channels in a manner that promotes the occurrence of AF (Figure 2). Reduced I_{Ca}, due to $Ca_{1.2}$ mRNA and protein expression downregulation, results in action potential duration (APD) shortening and reduced rate adaptation. This is mediated by rate-induced intracellular Ca^{2+} overload, activating the Ca^{2+}-dependent calmodulin–calcineurin–nuclear factor of activated T cell system causing transcriptional downregulation of...
Table 1 Large animal models of atrial fibrillation

<table>
<thead>
<tr>
<th>Large animal model</th>
<th>Clinical counterpart</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate-related remodelling</td>
<td>AT or fibrillation remodelling</td>
<td>Dog, goat, pig, sheep</td>
</tr>
<tr>
<td>Atrial structural remodelling</td>
<td>CHF</td>
<td>Dog, sheep, rabbit</td>
</tr>
<tr>
<td>CHF</td>
<td>CHF</td>
<td>Dog</td>
</tr>
<tr>
<td>MR</td>
<td>Mitral valve disease</td>
<td>Dog</td>
</tr>
<tr>
<td>Sterile pericarditis</td>
<td>Post-cardiac surgery</td>
<td>Dog</td>
</tr>
<tr>
<td>Atroventricular block</td>
<td>Severe bradycardia</td>
<td>Goat</td>
</tr>
<tr>
<td>Chronic volume overload</td>
<td>Cardiac shunt disease, arteriovenous shunt</td>
<td>Sheep, goat, rabbit</td>
</tr>
<tr>
<td>Hypertension</td>
<td>Hypertension</td>
<td>Sheep, rat</td>
</tr>
<tr>
<td>Acute atrial insults</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrial stretch</td>
<td>Acute volume overload</td>
<td>Dog, rabbit, sheep</td>
</tr>
<tr>
<td>Aconitine</td>
<td>Focal AF</td>
<td>Dog</td>
</tr>
<tr>
<td>Ischaemia</td>
<td>Acute myocardial infarction, coronary disease</td>
<td>Dog</td>
</tr>
<tr>
<td>Autonomic models</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vagal nerve stimulation</td>
<td>Cholinergic AF</td>
<td>Dog, sheep</td>
</tr>
<tr>
<td>Acetylcholine perfusion</td>
<td>Cholinergic AF</td>
<td>Sheep</td>
</tr>
<tr>
<td>Sympathetic nerve stimulation</td>
<td>Autonomic nervous system hyperactivity</td>
<td>Dog</td>
</tr>
</tbody>
</table>

CHF, congestive heart failure; MR, mitral regurgitation.
l_{cal} in an attempt to restore intracellular Ca^{2+} at the expense of arrhythmogenic APD changes. Further APD abbreviation is mediated by changes in the constitutive, agonist-independent, acetylcholine-regulated K^+ current (I_{ACH,C}). Atrial tachycardia causes spontaneous I_{ACH,C} channel opening, but does not affect mRNA or protein expression of Kir3.1/3.4 subunits underlying I_{ACH,C}. Chronic AF is associated with increased expression of protein kinase C (PKC)-ε, suggesting that abnormal channel phosphorylation by PKC leads to increased I_{ACH,C} activity. A recent work suggests that PKC-isoform switching is responsible for I_{ACH,C} activation with AT remodelling. Furthermore, the selective Kir3 antagonist, tertiapin-Q, terminates AF without affecting ventricular electrophysiology, indicating that I_{ACH,C} may be a potentially interesting anti-arrhythmic target.

Long-term rate-related remodelling may also lead to conduction velocity slowing. Decreased Na^+ current (I_{Na}) due to the down-regulation of the underlying Na^+ channel α-subunit expression, and changes in the content and distribution of gap junction connexins are thought to contribute to this finding. Additionally, maintained rapid atrial activation reduces transient outward current (I_{to}) and increases background inward-rectifier K^+ current (I_{K1} and I_{ACH,C}), which can modulate conduction changes by, respectively, opposing early depolarizing currents and removing I_{Na} inactivation by hyperpolarizing atrial cells.

Contractile dysfunction, responsible for intra-atrial thrombus formation and increased risk of embolic stroke in AF patients, occurs after several days of AF, and is associated with reduced l_{cal}. In canine atrial cardiomyocytes, sustained AT reduces systolic Ca^{2+} transients, impairs cellular Ca^{2+} handling, and reduces cellular contractility. Preventing Ca^{2+} overload during tachycardia prevents Ca^{2+} handling abnormalities. Moreover, altered SR Ca^{2+} release, intracellular [Ca^{2+}] changes, and l_{cal} inactivation contribute to AP abbreviation and the loss of rate adaptation commonly observed in this model. Phospholamban dephosphorylation and ryanodine receptor (RyR2) hyperphosphorylation underlie reduced SR Ca^{2+} load in goats with AF. Degradation of the myofibril structure also contributes to contractile dysfunction following AT remodelling. Ca^{2+}- overload-induced calpain activation plays a central role in the degradation of troponin T.

Atrial structural changes develop after long-term pacing-induced sustained AF: loss of myofibrils, accumulation of glycogen, altered mitochondrial shape and size, fragmentation of SR, and dispersion of nuclear chromatin are observed. Remodelling of the cellular ultrastructure develops progressively over 4 months of AF, and recovery remains incomplete 4 months post-AF. Oxidative and inflammatory stresses are also involved in AT remodelling. Simvastatin, with antioxidant properties, attenuates AF promotion in dogs. Prednisone prevents electrophysiological and AF-promoting effects of AT remodelling, possibly by an anti-inflammatory action. The signalling pathways involved are not fully understood; however, these mechanisms remain attractive potential therapeutic targets.

Several animal studies implicate the PVs in the promotion of AF. In dogs with rapid atrial pacing, PV cardiomyocytes with pacemaker activity have been found to have a higher incidence of DADs or EADs. Non-re-entrant focal activations have also been reported in the PVs of a canine model of pacing-induced sustained AF. However, AT in dogs produces qualitatively similar ionic remodelling in left atrium (LA) and PVs and reduces PV-LA AP differences. Furthermore, resection of all PVs fails to alter atrial tachycardia inducibility in AT-remodelled LA preparations. These findings suggest that PVs are not essential for AT-induced atrial tachycardia promotion in this model.

AV block is often created in AT models to avoid rapid ventricular response and tachycardia-induced ventricular dysfunction. In the absence of AV block, concomitant rapid ventricular response accelerates atrial fibrosis and the development of AF. In sheep without His bundle ablation (non-HBA), persistent AF develops significantly earlier than in those that undergo ablation (HBA). Non-HBA sheep have diminished atrial matrix metalloproteinase (MMP)-2, increased tissue inhibitor of metalloproteinase (TIMP)-2 expression, and more extensive atrial fibrosis. Inhibition of the angiotensin pathway has been shown to suppress fibrosis and the development of persistent AF in non-HBA sheep.

Indeed, rapid atrial activation alone can promote atrial fibrosis. In a chronic canine model of rapid pacing-induced AF with AV node ablation, the arrhythmia occurs in the presence of atrial fibrosis but in the absence of any ventricular dysfunction. In this model, AT induces extracellular matrix (ECM) remodelling that promotes fibrosis. Canine atrial fibroblasts cultured in the medium from rapidly paced atrial cardiomyocytes adopt an activated myofibroblast phenotype, as indicated by increased α-smooth muscle actin (SMA) protein expression. Furthermore, increased secretion of collagen and fibronectin by fibroblasts may explain increased atrial fibrosis with AT.

Atrial structural remodelling

The importance of structural remodelling of the atrial architecture, particularly involving enhanced fibrosis, was first emphasized by studies in a dog model of congestive heart failure (CHF). Atrial fibrosis is a common motif seen in many conditions associated with clinical AF, including ageing, valvular heart disease, hypertension, and cardiomyopathy.

Congestive heart failure

Congestive heart failure, one of the most common clinical causes of AF, has been investigated in experimental dog and sheep models involving ventricular tachypacing (VTP). Experimentally, CHF does not alter atrial ERP or global conduction velocity, in contrast to AT remodelling. Indeed, CHF may even prolong atrial ERP, leaving wavelength unchanged or even increased. Further, refractory period heterogeneity is unchanged. At the ionic current level, CHF decreases atrial I_{to}, I_{Ca}, and I_{Na} and increases I_{NCX}: the balance between net outward and inward currents results in no overall change or an increase in atrial ERP. Atrial cells isolated from CHF hearts display prolonged APDs, more positive resting membrane potentials, and DADs, implicating focal activity and DAD-induced triggered activity as potential mechanisms of CHF-mediated AF. High-resolution mapping of experimental animals with CHF suggests that focal activations and complex wavefronts originate in the PV region during AF.
although the precise role of PV-derived activity in maintaining AF in this model is unclear.56

Interstitial fibrosis interferes with conduction (causing areas of slowed conduction and spatial heterogeneity) and stabilizes re-entrant circuits.49 In sheep with CHF, AF frequency and dynamics are affected by the quantity, type (patchy vs. diffuse), and spatial distribution of fibrosis.50,51 Furthermore, patchy rather than diffuse fibrosis contributes to wavebreak and intramural rotor formation.51 The cessation of tachypacing is associated with full recovery of ventricular function, followed by normalization of atrial function and reversal of ionic remodelling. However, changes in fibrosis and conduction are not reversed, and a substrate that supports prolonged AF remains,57,58 implicating structural, rather than ionic, remodelling as an important contributor to the maintenance of AF in the presence of experimental CHF.57–60

The canine model has been fundamental in enhancing our knowledge of the signal transduction pathways involved in atrial structural remodelling during experimental CHF.50,61 Tissue angiotensin II concentration is elevated as early as 6 h following the onset of tachypacing.51 The effects of angiotensin II are mediated by three important mitogen-activated protein (MAP) kinases: ERK, p38, and JNK. Activation and increased expression of the phosphorylated forms were observed in this model prior to changes in the pro-apoptotic factors, Bax and caspase-3.61 Treatment with an angiotensin-converting enzyme (ACE) inhibitor prevented angiotensin II concentration increases and ERK hyper-phosphorylation, but did not affect p38 or JNK. Angiotensin-converting enzyme-inhibition failed to prevent necrosis and only attenuated fibrosis, suggesting that both angiotensin II-dependent and -independent pathways are involved in atrial structural remodelling.61 Omega-3 polyunsaturated fatty acids (PUFAs) also reduce atrial structural remodelling and AF promotion in VTP-induced CHF.62,63 Interestingly, PUFAs suppress the phosphorylation of both ERK and p38, in contrast to ACE-inhibition.62

Atrial fibrosis is more prevalent in the LA than in the LV in CHF dogs,64,65 and is reduced by ACE-inhibitors and the anti-fibrotic drug pirfenidone.66 which acts on the important profibrotic mediator, transforming growth factor (TGF)-\textbeta.61 Simvastatin reduces atrial structural remodelling by attenuating TGF-\textbeta-stimulated atrial myofibroblast differentiation.41 Growth factors such as foetal bovine serum, platelet-derived growth factor, angiotensin-II, and TGF-\textbeta cause atrial fibroblasts to proliferate to a greater degree than vascular fibroblasts.65 Platelet-derived growth factor signalling may be particularly important for atrial-selective fibroblast responses and fibrosis.65

Figure 3 shows atrial molecular expression changes in CHF-associated remodelling observed in animal experiments.67,68 Connective-tissue growth factor gene expression is enhanced by 24 h VTP.67 Connective-tissue growth factor is upregulated by angiotensin II, TGF-\textbeta1, or alterations in the cytoskeleton and promotes fibrosis in pathological conditions by blocking the negative TGF-\textbeta1 feedback loop and allowing continued TGF-\textbeta1-related activation.67 Upstream activators of MAP kinase signalling are upregulated early in VTP remodelling, notably the small G-protein-signalling element Rac1, which is a target for statins.58 Extracellular matrix remodelling appears to be important in CHF-induced AF since collagen, fibronectin, and TIMP-1 gene expression increase after 24 h VTP.68 Apoptotic signalling is also altered in experimental CHF.58

Mitral valve regurgitation

Atrial fibrillation is maintained by multiple wavefronts, non-uniform conduction, bidirectional block, and macro-re-entrant circuits in dogs with experimentally induced mitral valve regurgitation (MR).69 Effective refractory period is increased homogeneously throughout the LA and RA,70 whereas interstitial fibrosis and chronic inflammation are observed only in the dilated LA.71 No change in the spatial distribution of connexins is seen,71 but LA conduction slowing, likely due to fibrosis, accounts for increased AF inducibility.72

Sterile pericarditis

Atrial fibrillation associated with open-heart surgery results from multiple factors, with sterile pericarditis being an important contributor. A canine model of sterile pericarditis developed by the Waldo laboratory73 provides an experimental counterpart to the clinically observed phenomenon (Table 1). This model exhibits a high incidence of sustained AF,73 maintained by unstable re-entrant circuits around the atrial septum, or a stable LA driver causing fibrillatory activation, particularly in the RA.74 Sterile pericarditis also causes atrial flutter, and changes in the length of the line of functional block in the RA free wall are critical for the conversion of AF into flutter and back to AF.73 Altered gap junction connexin distribution and an inflammatory response contribute to abnormal atrial conduction and AF vulnerability, and agents with anti-inflammatory properties like atorvastatin and prednisone prevent AF in this model.75,76

Atrioventricular block

Chronic (4-week) AV block in goats leads to progressive atrial dilatation and prolonged AF.77 Atrial ERP and AF cycle length remain constant,77 whereas local conduction delays are observed during rapid pacing. Hypertrophy is present, but no atrial fibrosis is observed.77 Gap junction connexin expression is not altered,77 and structurally based spatial differences in atrial wall stress may explain the conduction heterogeneities.77 Sarcoplasmic reticulum Ca2+ load decreases due to phospholamban dephosphorylation and RYR2-hyperphosphorylation, along with reduced myofilament phosphorylation, further compromise contractility.35

Chronic volume overload

Chronic atrial dilatation and persistent AF can be produced in volume overload models.78–80 In a goat aortic-to-LA shunt model, progressive LA dilatation, ERP prolongation, and increased AF duration occur, without changes in conduction or tissue collagen.78 An aorto-pulmonary artery shunt in sheep induces moderate, isolated LA dilation, rendering the atria vulnerable to AF.79 Atrial myocytes from these hearts show enlargement and myolysis, and many are inexcitable.79 Effective refractory period is unchanged, I\textsubscript{Ca} is reduced by \textasciitilde 45%, and APs have a characteristically small amplitude and triangular morphology.79 Heterogeneous APD shortening and loss of excitability may be pro-arrhythmic factors.79 Conduction slowing is also observed in a rabbit model
with an arteriovenous shunt, and atrial tachyarrhythmias are associated with re-entrant and focal excitation originating in the posterior LA.80

Hypertension
Sheep with pre-natal corticosteroid-induced blood pressure increases exhibit enlarged LAs and increased AF durations. Wide-spread conduction abnormalities and atrial wavelength shortening are observed; however, refractoriness does not change significantly.81 Atrial tissue undergoes significant structural remodelling: central myofibrillolysis, myocyte hypertrophy, mitochondrial and nuclear enlargement, and fibrosis, along with evidence of apoptosis.81

Acute atrial insults
Some acute atrial insults can promote AF without chronic alterations in atrial structure and function. Since such models do not involve long preparation periods, they may be useful in screening drugs for anti-AF activity.

Atrial stretch (volume overload)
Increased atrial pressure leads to ERP shortening and increased AF vulnerability in isolated rabbit hearts, changes that reverse completely within 3 min of stretch release.82 Sustained AF is reliably induced in preparations lacking the pericardium, whereas in pericardially intact preparations, atrial stretch is limited by passive constraint despite elevated atrial pressures,83 suggesting that AF promotion with acute atrial volume loading relies on atrial stretch rather than increased atrial pressure.83

Stretch-induced AF is suppressed by the stretch-activated channel (SAC) blocking actions of gadolinium (Gd3+) and a specific tarantula venom toxin, GsMTx-4, in the absence of ERP changes.84,85 Figure 4 illustrates putative mechanisms of AF promotion and ERP shortening in response to acute atrial stretch. Non-selective cationic SACs are permeant to Ca2+, Na+, and K+, whereas other SACs are selective for K+ and, possibly, Cl−.85 It is possible that K+-selective SACs, which are resistant to Gd3+ and GsMtx-4, shorten the AP under stretch.85 The direct mechanisms by which atrial stretch promotes AF are still poorly understood. However, non-selective cation SACs may promote AF by causing Ca2+ overload.86 Activation of SACs elevates intracellular Ca2+ via increased Ca2+ influx.86 Since SACs are permeable to Na+, increased intracellular Na+ leads to the activation of the NCX and the accumulation of further intracellular Ca2+.86

Acute atrial stretch also promotes AF in vivo; however, changes in ERP depend on the method of stretch.88,89 Balloon catheter-induced LA dilatation in dogs shortens atrial ERP and lengthens atrial conduction time.88 Saline infusion-induced RA volume overload in anaesthetized dogs lengthens atrial ERPs (greater effects in the thin free wall than in the thick-walled crista terminalis), producing ERP dispersion.89 Ectopic drivers originating at the PV region may underlie stretch-induced AF.90

Aconitine-induced atrial fibrillation
Aconitine is a neurotoxin that opens tetrodotoxin-sensitive cardiac Na+ channels, causing triggered activity and AF. Aconitine-induced AF can be used for drug screening: e.g. the IKACh blockers tertiapin and NIP-151 have been shown to dose-dependently convert AF to sinus rhythm in the aconitine model.91,92
Acute ischaemia

Coronary artery disease is a significant risk factor for AF; however, the underlying mechanisms remain to be elucidated. Isolated acute atrial ischaemia, produced in dogs by occluding an atrial arterial branch that does not provide blood flow to the ventricles, increases AF duration. Severe conduction slowing occurs in the ischaemic zone, and histological examination reveals ischaemia-induced necrosis at sites of conduction delay. Ischaemia-induced atrial conduction slowing and AF promotion are suppressed by \(\beta \)-adrenoceptor blockade, current inhibition, and induction of heat shock protein by geranylgeranylacetone, whereas \(\mathrm{Na}^+ \) or \(\mathrm{K}^+ \) channel blockers appear ineffective, indicating that cardioprotective manoeuvres are more effective in ischaemic AF than more traditional AF-suppressing drugs. Together, these results suggest that acute atrial ischaemia may be an important underlying mechanism of AF in the context of coronary artery disease and may have a specific therapeutic profile.

Autonomic models

Vagus nerve stimulation readily promotes AF induction and maintenance. This method induces stable AF at a relatively low cost, and it has been useful for in vivo screening of potential anti-
arrhythmics. Dogs are typically used but other species, like sheep, also show clear vagal AF promotion. Vagally mediated AF results from acetylcholine activation of the \(\mathrm{K}^+ \) current \(\mathrm{i}_{\mathrm{KACH}} \), which abbreviates APD and ERP. Vagal stimulation also increases ERP heterogeneity, which correlates well with the duration of inducible AF. Acetylcholine perfusion has also been used to induce AF ex vivo, and optical mapping experiments in Langendorff-perfused sheep hearts reveal a decrease in the dominant frequency gradient of AF from LA to RA. Rotors are more often observed in the LA; dose-dependently increasing in frequency and stability with increased acetylcholine concentration. This may be explained by a greater abundance of the inward rectifier channel subunits underlying \(\mathrm{i}_{\mathrm{KACH}} \). Computer simulations show that a single dominant rotor or multiple re-entrant spiral generators can initiate fibrillatory activity in this model. At lower acetylcholine concentrations, extensive spiral wave meander prevents the emergence of single stable rotors. Therefore, prolonged fibrillatory activity only occurs when atrial size is large enough to permit a sufficiently large number of rotors that simultaneous extinction of all is unlikely. At higher acetylcholine concentrations, single primary rotors anchored in low acetylcholine concentration zones maintain activity, and substrate dimensions are not critical.

Sympathetic nerve stimulation is less effective than vagal activation in promoting AF for intensities that produce similar effects on ERP and wavelength. The discrepancy may be due to the lack of sympathetic effect on the heterogeneity of repolarization. In a canine model with MI and complete AV block, sympathetic hyperinnervation induced by either infusion of nerve growth factor or subthreshold electrical stimulation of the left stellate ganglion produces paroxysmal AF. A recent study revealed a relationship between autonomic activation and paroxysmal AF for arrhythmias observed after several weeks of rapid LA pacing. Immunohistochemistry indicates nerve sprouting and sympathetic hyperinnervation, and continuous autonomic nerve activity monitoring reveals simultaneous sympathovagal discharges preceding the onset of atrial arrhythmias. Cryoablation of extrinsic sympathovagal nerves eliminates paroxysmal AF and AT, suggesting a causal relation between simultaneous sympathovagal discharges and arrhythmias.

The importance of the PVs in the substrate for AF has been highlighted by several studies utilizing autonomic stimulation. Optical mapping experiments showed that acetylcholine-induced sustained tachycardias in an ex vivo canine PV preparation are due to re-entrant activity. In anaesthetized dogs, stimulation of autonomic ganglia at the base of the right superior PV converts PV firing into AF. Autonomic ganglion stimulation reduces the number of premature stimuli required for AF induction.
Table 2 Genetic models of clinically relevant atrial fibrillation

<table>
<thead>
<tr>
<th>Clinical counterpart</th>
<th>Predisposing cardiac factors</th>
<th>Genetically engineered models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atrial pathology in CHF</td>
<td>Atrial fibrosis, atrial dilatation, connexin remodelling, AV block</td>
<td>Constitutive TGF-β1 activation, overexpression of ACE128 or JDP2129</td>
</tr>
<tr>
<td>Atrial electrical remodelling</td>
<td>Bradycardia, delayed conduction, AV block, accelerated repolarization, decreased I_{Ca,L}, reduced Ca^{2+} transients, impaired Ca^{2+} handling</td>
<td>Cx40,130 Ca_{I.3}.132,133 KCNE1,136 or NUP155127 knockout; Kir2.1131 or KCNE1–KCQ1135 overexpression; FKBPL2.6 knock-out,139 R176Q mutation of RYR2; RYR2–S2814A knock-in140</td>
</tr>
<tr>
<td>Dilated cardiomyopathy</td>
<td>Dilated cardiomyopathy, atrial dilatation, atrial fibrosis, bradycardia, AV block, connexin remodelling</td>
<td>Rho-A,117 MURC,118 or TNF-α overexpression</td>
</tr>
<tr>
<td>Hypertrophic cardiomyopathy</td>
<td>Ventricular hypertrophy, atrial dilatation, fibrosis, bradycardia, decreased connexin-40</td>
<td>Junctin,121 junctate-1,122 CRE modulator,123 Rac1,124 HopX,125 or Gad126 overexpression</td>
</tr>
</tbody>
</table>

Pulmonary veins may be vulnerable sites for vagally induced arrhythmogenesis; however, intact PVs are not required for the maintenance of experimental cholinergic AF, since vagally stimulated sustained AF still occurs in dogs with electrically isolated PVs.109

Small animal models of atrial fibrillation

Rat models

Myocardial infarction

Left coronary artery ligation in rats leads to LV dysfunction, LA dilatation, and LA fibrosis. Mild-severe heart failure can be induced 3 months post-infarction. Elevated MMP activity and protein expression appear to be involved in ECM remodelling.110,111 Fibroblasts and collagen accumulate between cardiomyocytes,110,112 forming a potential substrate for AF; however, AF is not evident from ECG recordings in MI rats.110–112 In addition, connexin-43 is redistributed to lateral cell borders, but there is little evidence to suggest that lateralized connexins form functional gap junctions.112

Spontaneously hypertensive rats

The spontaneously hypertensive rat, a genetic model of systemic hypertension, develops a substrate for AF that includes increased LA interstitial fibrosis in the absence of changes in ERP.113,114 Hypertension-induced activation of the renin–angiotensin system may explain this observation, since angiotensin-II receptor blockage reduces fibrosis.114

Glycolytic inhibition

Sarcoplasmic reticulum uptake of intracellular Ca^{2+} is ATP-dependent, and the addition of sodium pyruvate to glucose-free perfusate selectively inhibits glycolysis in isolated rat hearts.115 This model yields spontaneous AF in old (≈28 months) but not young (≈4 months) rats. Atrial fibrillation is most likely mediated by Ca^{2+}-handling abnormalities, since EAD-induced triggered activity occurs at the LA–PV junction. In old rats, EADs originating in this region are associated with prolonged APD and elevated diastolic [Ca^{2+}].115

Asphyxia

An in vivo asphyxia rat model is associated with a high incidence of burst pacing-induced AF that may include elevated vagal and/or sympathetic nerve discharge as an underlying mechanism.116 Atrial fibrillation inducibility and duration are reduced by sympathetic inhibition, e.g. by amiodarone or sotalol, although no change in plasma catecholamine values was reported.116

Genetic mouse models

Transgenic mouse models of AF (Table 2) are often associated with a substrate for atrial conduction abnormalities, with electrophysiological abnormalities that accelerate atrial repolarization, or with RYR2 dysfunction, which promotes triggered activity and focal discharges. Atrial fibrosis and AF are linked to genetic models of several clinical paradigms, e.g. dilated cardiomyopathy, hypertrophic cardiomyopathy, and AT remodelling. Dilated cardiomyopathy is induced by overexpressing the GTPase RhoA, muscle-restricted putative coiled-coil (MURC) protein, or tumour necrosis factor (TNF)-α.117–120 RhoA is involved in the regulation of the actin cytoskeleton in actin stress fibre formation,117 and is further activated by MURC overexpression.118 Tumour necrosis factor-α overexpression also downregulates connexin40 (Cx40), which contributes to AF promotion.119,120

Hypertrophic cardiomyopathy can be mimicked by modulating SR Ca^{2+} handling.121–126 Overexpression of junctin, a calsequestrin-binding protein which forms a Ca^{2+} release complex, or junctate, a Ca^{2+}-binding protein located on the SR membrane and closely associated with SR Ca^{2+} storage capacity,122 produces atrial dilatation, fibrosis, and fibrillation.122,123 Ventricular hypertrophy and atrial enlargement are produced by changes in the transcription factor cAMP-response element (CRE) modulator.123 Overexpression of the GTPase Rac1, which regulates NADPH oxidase activity, is implicated in the generation of oxidative stress and fibrosis.124 Connexin-40 remodelling in the presence of cardiac hypertrophy is observed in a mouse model in which the transcriptional activity of serum response factor is inhibited by homeodomain-only protein X (HopX).125 Overexpression of activated cardiac Gxq, an important mediator of α-adrenoceptor, angiotensin II, and endothelin
effects, is also associated with ventricular hypertrophy, atrial dilatation, fibrosis, and prolonged atrial arrhythmias.126

Atrial structural remodelling-related genetic models of AF can be produced without accompanying ventricular dysfunction.127–129 Transforming growth factor-β1,127 ACE,128 and JDP2129 overexpression produce selective atrial changes. JDP2 is a transcription factor that represses transcription from promoters that contain certain elements, such as CRE. Indeed, JDP2 overexpression has a similar outcome to overexpression of CRE modulator.129

Models that involve cardiac electrical remodelling in the absence of cardiomyopathy include targeted deletion of Cx40130 and modulation of proteins underlying cardiac ion currents such as I_{CaL}, I_{Ks}, and I_{K1}.131–136 Deletion of Cx40 slows atrial conduction and increases vulnerability to AF.130 Overexpression of Kir2.1, the principal protein underlying I_{K1}, markedly decreases APD and causes spontaneous AF.131 Deletion of the Ca_{a1.3} (α_{1d}) subunit underlying I_{CaL} has similar consequences and also leads to reduced intracellular Ca^{2+} transients and Ca^{2+}-handling abnormalities.132,133 Congenital AF occurs with gain-of-function mutations in KCNQ1, and co-assembly of the KCNQ1-α and KCNE1-encoded β-subunit is required for the arrhythmogenic increase in I_{Ks} during repetitive stimulation.134 Overexpression of KCNE1–KCNQ1 fusion protein produces prolonged atrial arrhythmias in response to β-adrenergic receptor stimulation.135 Surprisingly, KCNE1 deletion leads to faster-activating I_{Ks} in atrial myocytes, abbreviated APD, and enhanced susceptibility to AF.136 Genetic mapping of congenital AF led to the discovery that a mutation in the NUP155 gene encoding a nucleoporin (member of nuclear pore complex) alters nucleocytoplasmic transport. Homozygous NUP155^{−/−} knockout mice die during embryogenesis, but heterozygous NUP155^{+/−} mice have abbreviated APs and spontaneous AF, although the mechanism linking nuclear pore complex abnormalities and AF are yet to be elucidated.137

Sarcoplasmic reticulum Ca^{2+}-leak during diastole leads to DADs and triggered activity.138 Atrial RYR2s are part of a macromolecular complex that includes protein kinase A, Ca^{2+}/calmodulin protein kinase II (CaMKII), protein-phosphatases, calmodulin, and FK-506-binding protein (FKBP12.6).138 Mice lacking RYR2-stabilizing FKBP12.6 show larger SR Ca^{2+}-leak and longer inducible AF episodes.139 Genetic inhibition of CaMKII phosphorylation of RYR2 reduces AF inducibility.140 Thus, mice models with RYR2 dysfunction are valuable for studying AF associated with triggered ectopic activity.

Use and abuse of animal models of atrial fibrillation

There is no such thing as a ‘perfect’ animal model of AF, any more than there is a single clinical mechanism of AF. The pathophysiology of AF in man is a complex function of the patient’s cardiac status (including the presence or absence of organic pathology),
References

8. Haissaguerre M, Jais P, Shah DC, Takahashi A, Hocini M, Quinoino G et al. Spon-

9. Wang J, Liu L, Feng J, Nattel S. Regional and functional factors determining induc-

terminating AF depends on electrical remodeling while persistent AF depends on additional structural changes in a rapid atrially paced sheep model. J Mol Cell Cardiol 2007;43:148–58.

16. Shishirohita-Takeshita A, Mitamura H, Ogawa S, Nattel S. Rate-dependence of atrial tachycardia effects on atrial refractoriness and atrial fibrillation mainten-

21. Cha TJ, Ehrlich JR, Chartier D, Qi XY, Xiao L, Nattel S. Kir3-base inward recti-
ifier potassium current: potential role in atrial tachycardia remodeling effects on atrial repolarization and arrhythmias. Circulation 2006;113:1730–70.

23. Voigt N, Maguy A, Yeh YH, Qi X, Ravers U, Dobrev D et al. Changes in iKur single-channel activity with atrial tachycardia remodeling in canine atrial cardio-

30. El-Armouache A, Bolink P, Eschenhagen T, Carrier L, Knaut M, Ravers U et al. Molecular determinants of altered Ca2+-handling in human chronic atrial fib-

