
SUPPLEMENTARY FIGURE 1:  Effect of EntropyXQT and QT variability index (QTVI) on incrementally adjusted 
proportional hazards ratio in models 1‐4. 

A.  Composite events 

B.  Appropriate ICD shocks 

C.  All‐cause mortality 

The hazard ratios corresponding to hierarchical models for composite events, appropriate ICD shock and all‐cause mortality are 
shown for QT variability index (QTVI, unshaded bars) and EntropyXQT (shaded).  This analysis was based on 45 ± 24 months of follow‐
up of 816 patients; there were 134 events for appropriate ICD shocks, 168 events for all‐cause mortality and 300 composite events.   

Model 1 consisted of QTVI (unshaded) or EntropyXQT (shaded).   

Model 2 consisted of QTVI or EntropyXQT, as well as demographics (age at implant, gender, race), medical history (paroxysmal atrial 
fibrillation, diabetes mellitus, ischemic cardiomyopathy, NYHA class) and prescribed medication (beta blocker).   

Model 3 consisted of all covariates in model 2 as well as mean arterial pressure, left ventricular ejection fraction, serum BUN levels, 
and biomarkers (hsCRP and NT‐proBNP).   

Model 4 consisted of all covariates in model 3 as well as 5‐min ECG time and frequency domain measures of heart rate variability 
(heart rate SDNN and LF:HF ratio).   

In the last step, EntropyXQT or QTVI were added to model 4 for QTVI (unshaded) or EntropyXQT (shaded), respectively.   
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SUPPLEMENTARY METHODS  

I. Conceptual description of EntropyXQT  

The concept of entropy and entropy rate are related to thermodynamic entropy1 and can 

be used to nonlinearly quantify the dynamics of physiological signals under the framework of 

continuous random variables and stochastic processes2, 3. We optimized the sample entropy 

measure4, 5 and developed EntropyXQT, which is the negative natural logarithm of the conditional 

probability that a sequence of QT intervals of length m, which repeats itself over the QT interval 

time series by matching within an arbitrary tolerance r, will also repeat if the length of the 

sequence was increased by incorporating the next QT interval, m+1.  EntropyXQT is calculated as 

the -ln(B/A) + ln(2r), where A denotes the total number of matches of length m, B is the subset 

of A that matches for both m and m+1, and B/A represents the conditional probability that 

subsequent points of a set of closely matching m intervals also remain close and match.  

For example, in a time series consisting of 300 QT intervals (QT1,...,QT300), consider that 

the first sequence of four consecutive QT intervals, i.e., QT1, QT2, QT3 and QT4 (m=4) recurs ten 

times (A1=10) elsewhere in the time series within a certain optimal tolerance (r=2 msec); the 

second sequence, QT2,...,QT5, does not repeat (A2=0); and the third sequence, QT3,...,QT6 repeats 

twenty times (A3=20).  

Consider also that the first sequence of five consecutive QT intervals, i.e., QT1,..., QT5 

(m+1=5) in the same time series recurs twice (B1=2) within the same r; the second sequence, 

QT2,..., QT6, does not repeat (B2=0; as expected from A2=0); and the third set, QT3,..., QT7, repeats 

three times (B3=3).  

Up to this point, the calculated conditional probability [-ln(B1+ B2+ B3)/(A1+A2+A3) = -

ln(5/30)] is 1.79 and EntropyXQT [1.79 + ln(4)] is 3.18. For the final calculation of EntropyXQT, this 

process would continue up to the last set of QT intervals, i.e., QT96,...,QT100. 

For regularly repeating QT intervals, the probability of recurrence will approach 1 and 

EntropyXQT will approach ln(2r). For nonrepeating QT intervals, the probability of recurrence will 

approach zero, and EntropyXQT will become infinitely large. The accuracy of the conditional 

probability B/A is dependent on the magnitude of both A and B. Generally, smaller values of r 

lead to higher and less confident entropy estimates because of falling numbers of matches of 

length m and, to an even greater extent, matches of length m+1. Whereas this becomes an 

increasing concern for very short records, this is less of a concern for the record lengths used in 

this study2. In addition, inaccurate probability estimates are typically avoided by EntropyXQT 

because r is optimally varied for each time series until a specified number of matches is attained 

for B, analogous to varying the bin widths of histograms to optimally depict the distribution of a 

particular data set. Because EntropyXQT normalizes for r, estimates made with different values of 

r measure the same inherent dynamics and can be directly compared between time series (see 

next section). 
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II. Calculation of EntropyXQT 

Mathematically expressed2-5, the entropy (𝐻) of a continuous random variable 𝑋 with 

possible values {𝑥1, 𝑥2, … , 𝑥𝑚} and probability density function 𝑓 is defined as 

𝐻(𝑋) = ∑ −ln[𝑓(𝑋)] = ∫ −ln[𝑓(𝑥)] ∙ 𝑓(𝑥) ∙ 𝑑𝑥
+∞

−∞

 (1) 

If 𝑋 has variance of 𝜎2, then 𝑌 = 𝑥 ÷ 𝜎  has variance of 1 and density of 𝜎𝑓(𝜎𝑦), and the 

entropy of  𝑌 will be related to the entropy of 𝑋 by  

𝐻(𝑌) = ∫ −ln[𝜎𝑓(𝜎𝑦)] ∙ 𝜎𝑓(𝜎𝑦) ∙ 𝑑𝑦 =
+∞

−∞

𝐻(𝑋) − ln[𝜎] (2) 

and as such, demonstrates that lower entropy indicates lower variance or higher uncertainty.  

Another important property of entropy is provided by the inequality 

𝐻(𝑋) ≤
ln[2𝜋𝑒] + ln[𝜎2]

2
= 𝐻(𝜎𝑍) (3) 

where 𝑍 is a random variable with a standard Gaussian distribution and this Gaussian distribution 

has maximum entropy among all random variables with the same variance. As such, an estimate 

of entropy that is substantially lower than this upper bound for a random sample (with sample 

variance used as an estimate of 𝜎2) would be consistent with a non-Gaussian underlying 

distribution, a characteristic often seen with repetitive patterns in multimodal cardiac 

arrhythmias, e.g., bigeminy, trigeminy. 

By letting  𝑋  denote a random sequence  𝑥1, 𝑥2, … , 𝑥𝑛,  the entropy rate of  𝑋  is defined 

as   

𝐻(𝑋) = lim
n→∞

𝐻(𝑥1, 𝑥2, … , 𝑥𝑛)

𝑛
 (4) 

where the joint entropy of  𝑚  random variables  𝑥1, 𝑥2, … , 𝑥𝑚  is defined as 

𝐻(𝑥1, 𝑥2, … , 𝑥𝑚) = 𝐸[−ln(𝑓(𝑥1, 𝑥2, … , 𝑥𝑚))] (5) 

where 𝑓 is the joint probability density function. For stationary processes, an equivalent 

definition is 
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𝐻(𝑋) = lim
𝑚→∞

𝐻𝑚(𝑋) = lim
𝑚→∞

𝐻𝑚(𝑥𝑚+1|𝑥1, 𝑥2, … , 𝑥𝑚) (6) 

Therefore, the entropy rate is the entropy of the conditional distribution of the present 

observation given the past.  For independent and identically distributed random sequences, the 

entropy rate reduces to the entropy of the common distribution. Estimating the entropy rate for 

sequences depends on estimates of its densities of order  𝑚, also referred to as the embedding 

dimension. For example, if  𝑥1, 𝑥2, … , 𝑥𝑛 denotes a stationary random sequence,  𝑥𝑖(𝑚)  denotes 

the template consisting of the  𝑚 × 1  vector  𝑥𝑖−𝑚+1, 𝑥𝑖−𝑚, … , 𝑥𝑖, the whole sequence is denoted 

by 𝑥𝑛 = 𝑥𝑛(𝑛), and the limiting infinite sequence is denoted by 𝑥 = 𝑥∞, then the sequence 

𝑥𝑚(𝑚), 𝑥𝑚+1(𝑚), … , 𝑥𝑛(𝑚) is not independent and several existing methods for analysis of 

independent vectors can be applied. More specifically, the 𝑚th order probability density function 

of the sequence  𝑓  and entropy (equation 5) can be empirically estimated.  

In order to be able to assess significant differences in entropy rate values for different 

time series and conduct meaningful statistical inferences, the standard error of the entropy rate 

estimates is an important consideration. In general, if �̂�2 denotes the sample variance and �̂�𝑘 

denotes the sample correlation coefficient at lag 𝑘 calculated using a divisor of 𝑛𝑘 = 𝑛 − 𝑘, the 

number of pairs of observations at lag 𝑘, and K is the maximum lag at which the random process 

has significant correlation, then the variance of the entropy estimate can be estimated by 

σ�̂�
2 =

�̂�2

𝑛
(1 + 2 ∑ 𝑛𝑘 �̂�𝑘

𝐾

𝑘=1

) (7) 

The calculation of EntropyXQT is based upon these fundamental calculations (equations 

1-7). More specifically, EntropyXQT is calculated by first forming a set of vectors 𝑢𝑗  of length 𝑚  

𝑢𝑗 = (𝑄𝑇𝑗, 𝑄𝑇𝑗+1, … , 𝑄𝑇𝑗+𝑚−1),     𝑗 = 1,2, … 𝑁 − 𝑚 + 1  

where 𝑚 represents the embedding dimension and 𝑁 is the number of measured QT intervals. 

The distance between these vectors is defined as the maximum absolute difference between the 

corresponding elements 

𝑑(𝑢𝑗 , 𝑢𝑘) = 𝑚𝑎𝑥[|𝑄𝑇𝑗+𝑛 − 𝑄𝑇𝑘+𝑛||𝑛 = 0, … , 𝑚 − 1]  

For each 𝑢𝑗 , the relative number of vectors 𝑢𝑘 for which 𝑑(𝑢𝑗 , 𝑢𝑘) ≤ 𝑟 is calculated as 

𝐶𝑗
𝑚(𝑟) =

number of [𝑢𝑘 | 𝑑(𝑢𝑗, 𝑢𝑘) ≤ 𝑟] 

𝑁 − 𝑚 + 1
∀𝑘 ≠ 𝑗  
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with values of 𝐶𝑗
𝑚(𝑟) ranging between 0 and 1. Average of 𝐶𝑗

𝑚(𝑟) yields 

𝐶𝑚(𝑟) =
1

𝑁 − 𝑚 + 1
∑ 𝐶𝑗

𝑚(𝑟)

𝑁−𝑚+1

𝑗=1

  

and the general form of the equation for calculating the entropy from the QT time series is 

EntropyXQT (𝑚, 𝑁, 𝑛, 𝑟) =  [− ln
𝐶𝑄𝑇

𝑚+1(𝑟𝑄𝑇)

𝐶𝑄𝑇
𝑚 (𝑟𝑄𝑇)

+ ln(2 ∙ 𝑟𝑄𝑇)] (8) 

where the embedding dimension or template length (𝑚) ≥ 3, the number of sampled intervals 

per bin of the time series (𝑁) is ≥20, the sufficient number of matches 𝑛 ≥ (N ÷ 5), 𝑟 is the 

calculated tolerance for a given 𝑁 that satisfies the specified 𝑛 but without perfect matches, 𝑟 

represents the tolerance designated for subsequent iterative calculations, 𝐶𝑄𝑇
𝑚 (𝑟𝑄𝑇) represents 

the total number of matches within 𝑟 of length 𝑚 in the 𝑄𝑇 time series, 𝐶𝑄𝑇
𝑚+1(𝑟𝑄𝑇) represents 

the total number of matches within 𝑟 of length 𝑚 + 1 in the 𝑄𝑇 time series.  

The value of 𝒓 is an important factor for determining the underlying dynamics of a 

segment of intervals. If 𝒓 is too small (i.e., smaller than the typical noise amplitude), then a group 

of  𝒎 intervals that are similar shall fail to match. However, if 𝒓 is too large, there will be a loss 

in discriminating power simply because the group of intervals will look similar to one another 

given sufficiently lax matching conditions. The ideal condition would be to vary 𝒓 with the scale 

of signal noise such that 𝒓 is as small as possible for searching for order in the dynamics while 

ensuring the number of matches remains large enough to ensure precise statistics. This is 

performed using an iterative algorithm and is analogous to varying the bin widths of a histogram 

to optimally describe its distribution.  

Because 𝑟 is varied to ensure 𝑛 = 𝑁 ÷ 5 matches, the calculation of EntropyXQT depends 

primarily on two parameters: 𝒎, the length of vectors considered in the calculation, given N data 

points. We performed extensive sensitivity analyses to validate the stability and reproducibility 

of the EntropyXQT measure in 6,131 asymptomatic adult human subjects in the Sleep Heart Health 

Study (data not shown). Sensitivity analyses in PROSe-ICD revealed the optimal parameters for 

calculating EntropyXQT for the prediction of SCD is 𝑚 = 4 and 𝑁 = 40 (Figure 1). Results of these 

sensitivity analyses also indicated a large margin of safety for the adjusted hazard ratio. These 

data also indicated that as 𝑚 approaches 0 (lower complexity), there is a sharp decrease in the 

adjusted hazard ratio, consistent with the lack of independent predictive value of conventional 

measures of variability in this cohort.  



DeMazumder et al. Online Supplement, Entropy of cardiac repolarization, Pg 5 of 6 

 

 

 

 

 

 

 

 

 

 

EntropyXQT provides a global measure of the probabilistic self-similarity of the QT time 

series data. Smaller values of EntropyXQT indicate a greater likelihood that similar patterns of 

measurements will be followed by additional similar measurements. If the time series is highly 

irregular, the occurrence of similar patterns will not be predictive for the following 

measurements and the EntropyXQT value will be relatively large. The novel features of EntropyXQT 

include nonlinear quantification of the dynamics of cardiac repolarization while ensuring 

confident probability estimates and interpreting quadratic entropy rate as a measure of Gaussian 

white noise6. Unlike prior strategies such as SampEn4, 7 or ApEn2, 3, 7, EntropyXQT is insensitive to 

both the degree of tolerance allowed for matching templates and to the presence of outlying 

points8. Unlike ApEn, frequency domain measures or geometric measures such as Poincaré 

plots9, EntropyXQT is accurate in short time series. Unlike conventional measures of variability9, 

10, there is no requirement that the data be stationary or preprocessed for the calculation of 

EntropyXQT. 
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FIGURE 1. Topographic representation of the adjusted hazard ratios for 
EntropyXQT as a function of 𝒎 and 𝑵.  
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