Below is a list of the references we initially selected based on Web of Science keywords searches. Out of them, we included only those that satisfied the criteria explained in the Methods section.


Dowling, D.K., Nystrand, M. & Simmons, L.W. Maternal effects, but no good or compatible genes for sperm competitiveness in Australian crickets. Evolution, 64(5): 1257-1266.


GERSHMAN, S.N. Large Numbers of Matings Give Female Field Crickets a Direct Benefit but not a Genetic Benefit. *Journal of Insect Behavior, 23*(1): 59-68.


26


KEKALAINEN, J., RUDOLFSEN, G., JANHUNEN, M., FIGENSCHOU, L., PEUKKURI, N., TAMPER, N. & KORTET, R. Genetic and potential non-genetic benefits increase offspring fitness of polyandrous females in non-resource based mating system. *Bmc Evolutionary Biology*, 10:


MARTIN, C.M. & WAGNER, W.E. Female Field Crickets Incur Increased Parasitism Risk When Near Preferred Song. Plos One, 5(3):


OLVIDO, A.E., FERNANDES, P.R. & MOUSSEAU, T.A. Relative effects of juvenile and adult environmental factors on mate attraction and recognition in the cricket, Allonemobius socius. *Journal of Insect Science, 10*: 1-17.


WEDEKIND, C., JACOB, A., EVANNO, G., NUSSE, S. & MULLER, R. (2008) Viability of brown trout embryos positively linked to melanin-based but negatively to carotenoid-based colours of


