Diagnosing cancer in the bush: a mixed-methods study of symptom appraisal and help-seeking behaviour in people with cancer from rural Western Australia

Jon D Emerya,b,c,*, Fiona M Waltera,b, Vicky Graya,d, Craig Sinclaire, Denise Howtinga, Max Bulsaraf, Caroline Bulsaraa, Andrew Webstera, Kirsten Aurete, Christobel Saundersg, Anna Nowakh and C D’Arcy Holmand

aSchool of Primary, Aboriginal and Rural Health Care, University of Western Australia, Crawley, Australia, bPrimary Care Unit, University of Cambridge, Cambridge, UK, cPrimary Care Unit, Melbourne Medical School The University of Melbourne, Melbourne, Australia, dSchool of Population Health, University of Western Australia, Crawley, Australia, eRural Clinical School, School of Primary, Aboriginal and Rural Health Care, University of Western Australia, Albany, Australia, fInstitute of Health and Rehabilitation Research, Notre Dame University, Fremantle, Australia and gSchool of Medicine and Pharmacology, University of Western Australia, Crawley, Australia.

*Correspondence to Jon D Emery, School of Primary, Aboriginal and Rural Health Care, M706, 35 Stirling Highway, University of Western Australia, Crawley, WA 6009, Australia; E-mail: jon.emery@uwa.edu.au

Received 9 September 2012; Revised 17 December 2012; Accepted 20 December 2012.

Background. Previous studies have focused on the treatment received by rural cancer patients and have not examined their diagnostic pathways as reasons for poorer outcomes in rural Australia.

Objectives. To compare and explore symptom appraisal and help-seeking behaviour in patients with breast, lung, prostate or colorectal cancer from rural Western Australia (WA).

Methods. A mixed-methods study of people recently diagnosed with breast, lung, prostate or colorectal cancer from rural WA. The time from first symptom to diagnosis (i.e. total diagnostic interval, TDI) was calculated from interviews and medical records.

Results. Sixty-six participants were recruited (24 breast, 20 colorectal, 14 prostate and 8 lung cancer patients). There was a highly significant difference in time from symptom onset to seeking help between cancers ($P = 0.006$). Geometric mean symptom appraisal for colorectal cancer was significantly longer than that for breast and lung cancers [geometric mean differences: 2.58 (95% confidence interval, CI: 0.64–4.53), $P = 0.01$; 3.97 (1.63–6.30), $P = 0.001$, respectively]. There was a significant overall difference in arithmetic mean TDI ($P = 0.046$); breast cancer TDI was significantly shorter than colorectal or prostate cancer TDI [mean difference : 266.3 days (95% CI: 45.9–486.8), $P = 0.019$; 277.0 days, (32.1–521.9), $P = 0.027$, respectively]. These differences were explained by the nature and personal interpretation of symptoms, perceived as well as real problems of access to health care, optimism, stoicism, machismo, fear, embarrassment and competing demands.

Conclusions. Longer symptom appraisal was observed for colorectal cancer. Participants defined core characteristics of rural Australians as optimism, stoicism and machismo. These features, as well as access to health care, contribute to later presentation of cancer.

Keywords. Breast cancer, colorectal cancer, prostate cancer, lung cancer, primary care, rural health.

Introduction

Rural Australians are more likely to die within 5 years of a cancer diagnosis than people from metropolitan areas.1 Although overall survival for most common cancers in Australia is improving, the rural–urban differential is actually widening, with significant excess deaths due to lung, colorectal, breast and prostate cancer in regional Australia.2 Previous studies have shown that patients living in rural areas are less likely to receive curative or reconstructive surgery, radiotherapy or hormonal treatment.3 Policy initiatives have focused, therefore, on reducing disparities in access to treatment.7

Access to treatment is an important determinant of outcome, but later presentation and stage at diagnosis have also been observed in rural cancer patients.8 International research suggests that the time taken to appraise symptoms and seek help (so-called ‘patient delay’) and management in primary care are also key determinants of cancer outcomes.9 Time to diagnosis is
associated with poorer survival for several common cancers. Studies using administrative data sets to examine poorer cancer survival in rural patients cannot provide an explanation for reasons underlying later presentation to health care. Qualitative studies have suggested factors such as distance, time and availability of appointments as contributing to later help-seeking behaviour by rural cancer patients, but none has compared these issues across cancers or combined them with data on time to diagnosis. Theoretical models that explain ‘total patient delay’ have existed in the literature for many years, but these have not been applied to the issue of rural cancer diagnosis.

This study aimed to explore, using a mixed-methods design, factors contributing to longer diagnostic intervals in rural cancer patients in Western Australia (WA), comparing them between common cancers. This article reports on symptom appraisal and help-seeking intervals; a separate study will report participants’ experiences of the health care system leading to their cancer diagnosis.

Methods

Theoretical framework

We applied the model of Pathways to Treatment to inform our data collection and analysis (Fig. 1). This model describes two intervals prior to presentation to health care about a symptom: Symptom Appraisal and Help-Seeking Behaviour. The diagnostic interval is the time from first presentation until cancer diagnosis, and the total diagnostic interval is the sum of these three intervals. Factors that influence the duration of these intervals relate to the patient (e.g. previous experience, social and cultural factors), health care system factors (e.g. access) and tumour (e.g. location and rate of growth).

Study population

From March 2009 to April 2010, we recruited patients recently diagnosed with breast, colorectal, prostate or lung cancer. Patients were eligible if their main residence was in either the Goldfields or the Great Southern regions of WA. Based on the Accessibility/Remoteness Index of Australia (ARIA), all statistical local areas (SLAs) in the Goldfields are considered remote or very remote. The ARIA classification aims to quantify relative remoteness in Australia based on the physical road distance to the nearest town or service centre. There are five remoteness area classes: Major City, Inner Regional, Outer Regional, Remote and Very Remote. Remote and Very Remote Australia represent ~3% of the Australian population. In the Great Southern region, 93% live in SLAs classified as outer regional and the remainder in a remote area. Patients were initially approached about the study by a rural cancer nurse coordinator or via the Cancer Registry and their treating clinician, and then their consents were received by the research interviewer. The majority of interviews occurred within 3 months of diagnosis.

Data collection

This was a mixed-methods study in which the analysis and interpretation of the quantitative data were

Figure 1 Model of Pathways to Treatment. Reproduced from Walter F, Scott S, Webster A, Emery J. The Andersen Model of Total Patient Delay: a systematic review of its application in cancer diagnosis. J Health Services Research and Policy 2011: 1-11, with permission from Sage Publications.
complemented by the qualitative data.27 In-depth semi-structured interviews were conducted by a researcher (CS, AW, and Dimity Elsbury) to explore the participants’ initial symptoms, their interpretation and factors contributing to their decision to seek help.

During the interview, participants estimated the dates of onset of their symptoms and their decision to seek help. A diagram depicting the separate intervals of Symptom Appraisal and Help-Seeking Behaviour, including making an appointment and attending a health care provider, was used to support data collection. We used a calendar-landmarking technique based on personal, locally and internationally relevant events to refine recall about key dates.18 Participants consented to provide access to their general practice, specialist and hospital records to obtain dates of attendance, investigations, diagnosis and treatment. Data were extracted by a researcher (DH) using a specific pro forma.

Data analysis

All interviews were transcribed and subjected to Framework analysis.39 The transcripts were read repeatedly, and an iterative process followed, involving familiarization with the data, identification of a thematic framework, and coding using NVivo software. The framework was developed through analysis of the initial 20 transcripts and was mapped onto the model of Pathways to Treatment.18 This was applied to subsequent transcripts seeking to confirm or refute components of the framework. All transcripts were read and coded by at least two researchers (DH, CB, CS, JE, and FW). Regular meetings between coders were held to discuss the framework and interpretation of individual transcripts to ensure consistency of coding. The different backgrounds of researchers were also discussed, including their potential impact on data collection and analysis. Data saturation for the qualitative data, defined as no new emergent themes, was reached before recruitment ended.

For patient-reported dates, where uncertainty existed, we applied published midpoint rules to estimate the actual date.10 Where necessary, a clinical consensus group (JE, FW, DH, and VG) reviewed the transcripts to confirm the date of first symptom and first presentation to health care. Intervals were calculated from the interviews and medical records. Date of diagnosis was based on the date on the pathology report or first date of clinical diagnosis in the medical record where no pathology was available. The Total Diagnostic Interval (TDI) was defined as the time from first symptom to diagnosis. For screen-detected cases, we used the date of attendance for the screening test as the initial date in the patient pathway.

Where data were highly skewed, we applied log transformation prior to conducting general linear modelling to compare intervals between cancers. We applied a Least Significant Difference correction for multiple comparisons. Quantitative data were analysed using SPSS version 18.

In order to triangulate our findings, we developed a mixed-methods matrix in which we identified individual cases with long or short intervals and examined how well the qualitative framework explained their diagnostic pathway.20 This approach to integrate data allowed us to explore convergence and discrepancy of findings across types of data as well as identify patterns across cases and types of cancer.25

Results

Sixty-six people were interviewed (43 Goldfields, 23 Great Southern region; 24 breast, 20 colorectal, 14 prostate and 8 lung cancer patients). Thirty-eight were women and the mean age was 60.5 years. In Australia, there are national screening programmes for breast, colorectal and cervical cancer. There were 19 screen-detected cases (9 breast, 2 colorectal and 8 prostate cancer cases). The sample represented ~25% of all cases among the four cancers in the two regions.22

Table 1 Summary of symptom appraisal, help-seeking behaviour and total diagnostic intervals

<table>
<thead>
<tr>
<th></th>
<th>Symptom appraisal</th>
<th>Help-seeking behaviour</th>
<th>Total diagnostic interval</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[95% CI]</td>
<td>[95% CI]</td>
<td></td>
</tr>
<tr>
<td>Breast</td>
<td>27</td>
<td>4.4 (1.1–171)</td>
<td>3</td>
</tr>
<tr>
<td>Colorectal</td>
<td>130</td>
<td>58.6 (15.7–2177)</td>
<td>87</td>
</tr>
<tr>
<td>Lung</td>
<td>36</td>
<td>1.11 (0.2–71)</td>
<td>2</td>
</tr>
<tr>
<td>Prostate</td>
<td>309</td>
<td>21.1 (3.3–135.2)</td>
<td>42</td>
</tr>
</tbody>
</table>

Arithmetic mean and median in days. IQR, inter-quartile range.
Table 1 summarizes the Symptom Appraisal, Help-Seeking Behaviour and TDIs for all cases and by cancer type. Following log transformation of the data, there was a highly significant difference in Symptom Appraisal between cancers in those who presented symptomatically [geometric means: breast, 4.41 (95% CI: 1.14–1714); colorectal, 58.56 (15.75–21772); lung, 1.11 (0.17–711); prostate, 21.09 (3.29–135.24); \(P = 0.006 \)]. Tests for pairwise differences showed that the geometric mean Symptom Appraisal for colorectal cancer was significantly longer than that for breast and lung cancers [geometric mean differences: 2.58 (95% CI: 0.64–4.53), \(P = 0.01 \); 3.97 (1.63–6.30), \(P = 0.001 \), respectively]. The geometric mean Symptom Appraisal for prostate cancer was longer than that for lung cancer [geometric mean difference: 2.94 (95% CI: 0.24–5.65), \(P = 0.033 \)]. There was a significant overall difference in arithmetic mean TDI (\(P = 0.046 \)): breast cancer TDI was significantly shorter than colorectal or prostate cancer TDI [mean difference: 266.3 days (95% CI: 45.9–486.8), \(P = 0.019 \); 2770 days (32.1–521.9), \(P = 0.027 \), respectively]. There was no significant difference in arithmetic mean TDI in those with early versus late stage disease [geometric mean early stage: 129.54 (95% CI: 90.50–185.43); late stage: 93.88 (60.16–146.48); \(P = 0.27 \) for difference].

Qualitative data

Analysis of the qualitative data identified several key themes that helped explain differences between cancers and individual cases (see Table 2).

The nature of the symptoms strongly influenced appraisal and help-seeking behaviour. Symptoms that were intermittent, perceived as mild or increased gradually over time were more likely to present later. Participants with more severe symptoms, such as pain or dyspnoea, presented more promptly. Specific symptoms such as a breast lump or visible haematuria were recognized as ‘red flag’ symptoms; in contrast, blood in the stools and even haemoptysis did not necessarily prompt early help-seeking behaviour. Several women described uncertainties about the presence of a breast lump, either in the context of ‘lumpy breasts’ or inability to consistently find a lump when examining themselves. This self-doubt around the existence of a symptom contributed to longer symptom appraisal.

Participants interpreted their symptoms on the basis of personal models of illness, which influenced decisions to self-manage or seek help. The absence of pain or the presence of only a single symptom was perceived as a marker of less-severe illness. Alternative explanations for symptoms were common; ageing, excessive workload, dietary change and piles were used to justify urinary symptoms, fatigue, weight loss and rectal bleeding, respectively. A previous benign diagnosis for similar symptoms and reassurance from previous normal investigations contributed to longer periods for appraising symptoms. Pre-existing conditions, such as urinary frequency from diuretics, or tiredness as part of depression, were normalized and contributed to longer symptom appraisal. Most participants with lung cancer discussed their long-term respiratory symptoms as separate from their cancer diagnosis and presented with acute worsening of dyspnoea or cough.

Perceptions of being at low risk of cancer and over-optimism towards their health meant some participants were more likely to find alternative benign explanations for their symptoms. Although optimism was a separate factor contributing to longer help-seeking behaviour, it was associated with stoic responses to symptoms, which meant that severe and continuous symptoms were self-managed. For example, a man in his early 70s, who had developed such marked diarrhoea that he was using incontinence pads, waited for many weeks before seeking help and being diagnosed with colorectal cancer. Related to such stoicism in men was the need to be perceived as tough or macho and less willing to seek help. Many participants discussed these characteristics of optimism, stoicism and machismo as core features of what being ‘rural’ in Australia meant; these characteristics contributed to longer symptom appraisal in our sample.

The decision to seek help was influenced by several additional factors. If symptoms did not interfere with daily activities, participants were less likely to seek help. Competing priorities such as being self-employed, a close relative’s illness, Christmas and holidays were explanations for postponing help-seeking behaviour. Fear of the diagnosis of cancer and fear or embarrassment about potential examinations or investigations also led to later help-seeking behaviour. This was common to people with symptoms related to breast, prostate or colorectal cancer. Participants had often discussed their symptoms with others; many women with breast lumps with shorter help-seeking intervals had asked a partner or friend to examine them to confirm the presence of a lump, thereby reducing self-doubt. Discussing symptoms with colleagues did not necessarily result in earlier help-seeking behaviour as it often reinforced benign explanations for symptoms or confirmed fears about examinations.

Perceptions about the health care system also affected decisions to seek help. Rural workforce shortages create both real and perceived difficulties of access to general practice and concerns about not wasting their doctor’s time. Few participants, however, actually experienced difficulty making a timely appointment with a GP. Some participants discussed continuity with a regular GP and deliberately delayed an appointment to maintain continuity. People living further from a general practice postponed help-seeking behaviour due to the burden of travel and needed several reasons to visit town.

Table 3 presents a mixed-methods matrix highlighting the factors associated with longer (>50 days) or shorter symptom appraisal intervals (<10 days). These cut-offs were arbitrarily defined on the basis
Nature of symptoms

’T he trouble is with cancer, I think you know it creeps in on you and ... and like there’s a bit of blood there but no pain and you think well if there’d been some pain there you’d have definitely said oh shit there’s something wrong here. No pain whatsoever.’ Colorectal cancer (male) patient.

‘Yeah, but that [breathlessness] was sort of so permanent that you just ... live with it’. Lung cancer (female) patient.

Personal models of illness and discussion with colleagues

‘I used to talk to people that had prostate cancer ... and that’s my friends, close friends, and I used to say well how do you know you’ve got it? They said, well Jesus, your belly swells up and you can’t pass your ... your urinal and ... pain and that and that’s when they go to the doctor and I thought, no I had no problems. I used to wee, wee, wee all the time. Yeah. And I thought well I must be all right, you see and bloody hell, no it was doing me over for quite a while’. Prostate cancer patient.

‘Well once I’d really felt the lump and my girlfriend confirmed that I was feeling a lump, it wasn’t my imagination I sort of did think of cancer’. Breast cancer patient.

Alternative explanations

‘... I’ve never had a barrier about checking things out medically. I just think that I was working these crazy, crazy hours, you know, why wouldn’t you be tired’. Colorectal cancer (male) patient.

‘I, I didn’t even give cancer a thought, or polyps or anything else like that, but ... I just thought well maybe, maybe the ... the bowel was irritated from ... parasites. I, I really didn’t know. I didn’t even give cancer a thought at all’. Colorectal cancer (male) patient.

Low risk perception

‘yeah well I was shocked because um, you expect people who smoked and went out drinking and things like that, you know. Um, and you think if you look after yourself and be healthy and not being obese, ah, rather surprised me. I mean, if I was obese or something like that I would expect it I suppose’. Lung cancer (female) patient, 65–69.

Optimism

‘It was the sort of thing I think you think it happens to other people, it’s like most things in life isn’t it? Oh it’s not going to happen to me. Oh, got news for you sunshine’. Colorectal cancer (male) patient.

Fear and machismo

‘Yeah. Being a real hero bloke, you know, you don’t go to the doctor about that. I’m not going there ... going where they wanna go, nup’. Colorectal cancer (male) patient.

‘Yeah, I didn’t want to go to the doctors, I didn’t want to get a finger shoved up me bum. You know, I feared it. And, for that reason and talking to all the blokes at work and one thing and another and they said they’d never get that done’. Prostate cancer patient.

Stoicism

‘[I didn’t see a doctor then because] I was a young strong buck then wasn’t I? I didn’t sort of tend to ... not take notice of these things. And um, yes but it wasn’t ... like I thought it was just an inconvenience’. Prostate cancer patient, 55–59.

‘But ... but ah, you know a lot of people in the country sort of shrug it off and have another beer or whatever, or get back to work and say you’re being stupid let’s get on with it, and then they put off something I think’. Colorectal cancer (female) patient.

‘And the country men are worse than the women, by a long shot. They’re, you know, bush blokes. You know, “I’m not going to the doctor. I’ll be right, mate”’. Lung cancer (female) patient.

Stoicism and perception of access

‘But half the reasons why people like myself, you know we’re pretty tough guys out in the bush there, and all shearers. They don’t go to the doctor, because why go to the doctor, it takes you three weeks to four weeks to get to the doctor’. Colorectal cancer (male) patient.

No interference with work

‘Um, if I had of been an inside worker I’d have probably been worried. But see when you’re outside worker you can just walk over behind the shed and have a squirt you know? Ah, an inside worker he’d have to be getting out of ... going down the hall to have a ... walking past everyone to have a pee all day. You know?’ Prostate cancer patient.

Competing demands

‘I’ve worked for myself 90 per cent of my working life. And you don’t take time off ‘cause you’re crook. In the farming environment. You just don’t do it. I mean you could be bloody dead on your feet. You know, I’ve been, you know, spikes in my legs, I’ve been knocked over by cattle and can’t ... walk but you’ve got to keep working’. Prostate cancer patient.

‘I knew that there was something wrong and um, so I waited till my little granddaughter was born and then I was straight off to hospital’. Breast cancer patient.

Distance to health care

‘And I’m thinking that, no this ... this could get better without a trip into town. Because we ... because we’re 40 k’s out, you think twice about coming in for every little cough and sniffle’. Lung cancer (female) patient.

of the spread of observed intervals and their likely clinical significance. Those with longer appraisal intervals all had alternative benign explanations for their symptoms; their symptoms were intermittent or perceived as milder. Many only presented when they developed an additional ‘severe’ symptom such as pain. Optimism, stoicism, embarrassment and fear were evident in many with longer appraisal intervals. All these factors were more commonly seen in patients with colorectal cancer. The two women with breast cancer with longer appraisal intervals doubted their self-examination findings and had not discussed the lump with anyone else. In contrast, many women with breast cancer with shorter intervals had discussed their lump with someone close and had been re-examined by them.
Discussion

This is the first study to apply a mixed-methods approach to examine diagnostic intervals for rural cancer patients internationally. We showed significant differences in Symptom Appraisal and TDI's between cancers, which were explained by several common underlying factors including the nature of the symptoms, optimism, stoicism, fear and embarrassment. This was a particular problem for colorectal cancer.

Our study is strengthened by the explicit application of a theoretical model of patient pathways to...
Similar to present symptomatically, Australia have found that rural men are more likely explained by this previously described. Conditions or another more common cause has beenness of symptoms or misattributing them to existing tom appraisal lower 5-year survival from breast cancer. Intervals observed in this study are associated with poorer outcomes. A TDI of >3 months is associated with 12% effects on productivity rather than viewing health as ‘an absence of symptoms. Furthermore, stoicism in rural Australians has been shown to predict help-seeking behaviour for mental health problems. Although stoicism has been discussed as a possible factor underlying poorer cancer outcomes in rural Australia, our article presents novel data to support this assertion. We recognize that additional research comparing stoic responses in urban and rural Australians would be informative.

The other rural-specific issue we identified was related to access to health care. Improving access to primary care in rural Australia is a national priority. Many participants discussed workforce shortages and access to their GP as factors they considered when deciding to make an appointment. This was exacerbated if they lived some distance from the town where the nearest practice was based. However, despite perceptions of poor access to general practice, few of our participants experienced problems seeing their GP promptly regarding their symptoms.

Internationally, there is significant interest in symptom appraisal and attempts to reduce diagnostic intervals, especially in countries that have poorer cancer outcomes. Our robust methods could be applied to conduct further comparative research on symptom appraisal internationally in rural and urban cancer patients. This study provides a rich understanding of key factors underlying later presentation by rural Australians and could inform the development of targeted interventions to promote earlier presentation of symptoms suggestive of cancer.
Acknowledgements

We thank Mike Mears, Andrew Kirke, Andrew Knight, Christine Jefferies-Stokes, Pat Booth, Dimity Elsbury and Loraine Sholson for their contributions to this project. We thank all the participants, their GPs and the medical records officers involved in the study.

Declaration

Funding: Cancer Council of Western Australia and an National Health and Medical Research Council (NHMRC) Partnership Grant 572765.
Ethical approval: This study was approved by the Human Research Ethics Committee of The University of Western Australia (RA/4/1/2242).
Conflict of interest: none.

References