The plant pathogen *Erwinia amylovora* produces acyl-homoserine lactone signal molecules in vitro and in planta

Vittorio Venturi a,*, Chiara Venuti a, Giulia Devescovi a, Carla Lucchese b, Arianna Friscina a,b, Giuliano Degrassi a, Claudio Aguilar a, Umberto Mazzucchi b

a Bacteriology Group, International Centre for Genetic Engineering and Biotechnology, Area Science Park, Padriciano 99, 34012 Trieste, Italy
b Department of Agro-Environmental Sciences and Technologies, University of Bologna, Viale G. Fanin, 44, 40127 Bologna, Italy

Received 23 July 2004; received in revised form 23 September 2004; accepted 8 October 2004

First published online 22 October 2004

Edited by S. Mongkolsuk

Abstract

We report for the first time the production of acyl homoserine lactones (AHLs) by *Erwinia amylovora*, an important quarantine bacterial pathogen that causes fire blight in plants. *E. amylovora* produces one N-acyl homoserine lactone [a N-(3-oxo-hexanoyl)-homoserine lactone or a N-(3-hydroxy-hexanoyl)-homoserine lactone] quorum sensing signal molecule both in vitro and in planta (pear plant). Given the involvement of AHLs in plant pathogenesis, we speculate that AHL-dependent quorum sensing could play an important role in the regulation of *E. amylovora* virulence.

© 2004 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.

Keywords: Quorum sensing; *Erwinia amylovora*; Acyl-homoserine lactone; Fire blight

1. Introduction

*Erwinia amylovora* is a necrogenic phytopathogenic bacterium, the causal agent of fire blight in apple, pear and other rosaceous plants [1]. The bacteria colonize the intercellular spaces of bark, causing the death of the plant cells associated with distortion of cell walls and the formation of lysogenic cavities. In the susceptible, succulent shoots, the necrosis spreads downwards from the apex with browning of the tissues. In recent years, new light has been thrown on the molecular mechanisms of the virulence [2]. Proteins injected into the plant cells through type III secretion appear to be crucial for establishment [3], while abundant extracellular polysaccharides are essential for tissue colonization [1]. The production of virulence factors of phytopathogenic *Erwinia* species is regulated by global systems which respond to stimuli like cell density (quorum sensing) or to other unknown signals resulting in the control by the Rsm global regulatory system [4].

In the last decade, it has become apparent that in bacteria a major level of regulation exists involving cell-cell communication via the production and detection of small signaling molecules called autoinducers. This allows bacteria to monitor their population density by responding to the extracellular concentration of the autoinducer they produce. This mechanism is known as quorum sensing (QS). In gram-negative bacteria, N-acyl homoserine lactone (AHL) autoinducers appear to be the most common signaling molecules, produced by an autoinducer synthase belonging to the LuxI protein family. The AHLs are diffusible and different bacterial species produces different AHLs
which vary in the length and structure of the acyl chain [5]. A transcriptional regulator, belonging to the LuxR family, then forms a complex with the cognate AHL at high threshold levels affecting the transcriptional activity of target genes. QS regulated gene expression is most beneficial when a community of bacteria expresses them as for example is the case for biofilm formation, conjugation, bioluminescence, secretion of enzymes, virulence factors and pigment production ([6] and references therein). Several phytopathogenic bacteria have integrated QS regulation in the regulatory cascades that control expression of pathogenicity-related genes in plant-pathogenic bacteria. Among the best characterized examples are the AHL-dependent systems controlling conjugation in Agrobacterium tumefaciens. Among the best characterized examples are the pathogenicity-related genes in plant-pathogenic bacteria which have integrated QS regulation in the regulatory cascades that control expression of pathogenicity-related genes in plant-pathogenic bacteria. Among the best characterized examples are the AHL-dependent systems controlling conjugation in Agrobacterium tumefaciens. Among the best characterized examples are the pathogenicity-related genes in plant-pathogenic bacteria, which have integrated QS regulation in the regulatory cascades that control expression of pathogenicity-related genes in plant-pathogenic bacteria. Among the best characterized examples are the AHL-dependent systems controlling conjugation in Agrobacterium tumefaciens. Among the best characterized examples are the pathogenicity-related genes in plant-pathogenic bacteria.

In this study we demonstrate that Agrobacterium tumefaciens has at least one quorum sensing system present since several Italian isolates produce either a N-(3-oxo-hexanoyl)-homoserine lactone (3-oxo-C6-AHL) or a N-(3-hydroxy-hexanoyl)-homoserine lactone (3-OH-C6-AHL) in vivo. Importantly, we have also demonstrated that production of 3-oxo-C6-AHL by one of the isolates also occurs in infected tissues in planta, indicating that AHL-quorum sensing could have a role in pathogenesis. To our knowledge this is the first report demonstrating the presence of an AHL-dependent system in Agrobacterium tumefaciens thus raising the question of its possible role in pathogenesis, as the AHL molecule produced was also detected in planta.

2. Materials and methods

2.1. Bacterial strains, culture conditions and recombinant DNA techniques

Erwinia amylovora strains used are listed in Table 1 and were grown at 27 °C in either M9CA medium [8] with the addition of 0.3% w/v casamino acids and sucrose or in LB medium [8].

<table>
<thead>
<tr>
<th>E. amylovora strains</th>
<th>Host plant, year of isolation, origin</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. amylovora OMP-BO 1077/7</td>
<td>Pear, 1994, Emilia Romagna region, Italy</td>
<td>[16]</td>
</tr>
<tr>
<td>E. amylovora IPV-BO 5039</td>
<td>Hawthorn, 2003, Friuli Venezia Giulia region, Italy</td>
<td>This study</td>
</tr>
<tr>
<td>E. amylovora IPV-BO 5357</td>
<td>Cotoneaster, 2003, Piemonte region, Italy</td>
<td>This study</td>
</tr>
<tr>
<td>E. amylovora IPV-BO 5359</td>
<td>Pear, 2003, Piemonte region, Italy</td>
<td>This study</td>
</tr>
<tr>
<td>E. amylovora IPV-BO 5452</td>
<td>Hawthorn, 2003, Veneto region, Italy</td>
<td>This study</td>
</tr>
<tr>
<td>E. amylovora IPV-BO 5466</td>
<td>Pear, 2003, Veneto region, Italy</td>
<td>This study</td>
</tr>
<tr>
<td>E. amylovora IPV-BO 5468</td>
<td>Cotoneaster, 2003, Veneto region, Italy</td>
<td>This study</td>
</tr>
<tr>
<td>E. amylovora IPV-BO 5010</td>
<td>Pear, 2003, Lombardia region, Italy</td>
<td>This study</td>
</tr>
<tr>
<td>E. amylovora IPV-BO 5011</td>
<td>Pear, 2003, Lombardia region, Italy</td>
<td>This study</td>
</tr>
<tr>
<td>E. amylovora IPV-BO 4853</td>
<td>Apple, 2003, Bolzano province, Italy</td>
<td>This study</td>
</tr>
</tbody>
</table>

(pSB401) was grown in LB medium plus tetracycline 10 μg/ml at 37 °C. Plasmid pSB401 contains the following genetic arrangement: luxR gene, the promoter of luxI fused to a promoterless luxCDABE [9]. Providing exogenous AHL inducer molecules to E. coli (pSB401) results in the induction of bioluminescence. E. coli DH5α (pSCR2) was grown in LB medium plus ampicillin 100 μg/ml at 37 °C. Plasmid pSCR2 contains the following genetic arrangement: cepI gene, the promoter of cepI fused to a promoterless lacZ [10]. Providing exogenous AHL inducer molecules to E. coli (pSCR2) results in the induction of β-galactosidase production. Chromobacterium violaceum CVO26 was grown in LB medium and is a double mini-Tn5 mutant derived from ATCC 31532, this mutant is non-pigmented and production of the purple pigment can be induced by providing exogenous AHL inducer molecules [11]. PCR was performed using genomic DNA of E. amylovora OMP-BO 1077/7 and oligonucleotides designed on regions of E. carotovora expR locus [12]. Using the following two oligonucleotides, EAM1 5’tttattctcatgcggca-3’ and EAM2 5’ttactacttttttactc-3’ (using conditions, 5 m at 98 °C initially, then 30 s 95 °C, 30 s 45 and 30 s at 72 °C for 30 cycles), resulted in the amplification of a 223-bp which was cloned in pMOSBlue (Amersham Pharmacia Biotech, Amersham, UK) yielding pGEAM. DNA sequencing of this fragment revealed that it contained part of the luxIR homologs of E. amylovora (Accession No. AJ841286).

2.2. Inoculation of plant material

Two-year old pear cv. Abate Fetel (most common used in Italy and it is sensitive to E. amylovora), grafted onto quince BA29, were grown in individual pots in the open. Three weeks before the experiment, in mid April, the plants were placed in a climatic chamber at 24 °C so that the shoots reached a length of 23–25 cm. For inoculation, 5 l of bacterial suspension in distilled water with a turbidity of 0.100 A660 were placed on a cross cut on each shoot at 20 cm from the base. Control shoots were
treated with distilled water. After 4 days in the climatic chamber, the shoots were cut at the base, stripped of their leaves, washed in tap water, dried rapidly on paper towels and immediately frozen in liquid nitrogen. Twelve shoots were not frozen, and were used to determine bacterial growth in planta.

2.3. In planta bacterial growth

Shoot segments, 20 cm, were washed with tap water, dried on paper towels, cleaned with denatured alcohol under sterile flow hood, rinsed with distilled sterile water and dried again with sterile blotting paper. One-cm shoot segments were cut with a sterile scalpel at a distance of 1.5, 5.5, 8.5, 11.5, 14.5, and 17.5 cm from the edge of the visible necrotic area of each shoot. For each distance two 1 cm segments have been crushed in a pestle containing 1.5 ml sterile distilled water. The suspension obtained and tenfold dilution were used for plate counting on sucrose nutrient agar [13].

2.4. Purification and characterization of AHLs

A culture of *E. amylovora* IPV-BO 1077/7 was grown to early stationary phase in 10 l M9CA medium [8] in a Tecbio 10 (Tecninox, Parma, Italy) fermenter at 27 °C. The supernatant from the 10 l culture was concentrated to 200 ml by rotary evaporation at 40 °C in 2 days, acidified with 0.1% acetic acid and extracted twice with the same volume of ethyl acetate. The extract in the organic phase was recovered after centrifugation at 5000 rpm (Sorvall with a GSA rotor) for 5 min and dried. The extract was resuspended and prepared for HPLC fractionation, TLC analysis and overlaid with *E. coli* (pSB401) as described above. The same procedure was performed on 75 uninfected healthy shoots.

3. Results and discussion

3.1. Detection of AHL autoinducers from *E. amylovora* isolates

Using bacterial biosensor strains described in Section 2, all the *E. amylovora* isolates listed in Table 1 were used to test by growth in solid media in plate streak assay [15]. The bacterial biosensor *C. violaceum* CVO26 induces the production of violacein when AHL signal molecules are present, *E. coli* (pSCR2) activates the biosynthesis of β-galactosidase, and *E. coli* (pSB401) induces light emission. All strains gave a negative result in solid media in plate streak assays meaning that they either did not produce AHLs, produced very low amounts or the biosensors displayed low sensitivity towards the putative molecule(s) that they produce. Consequently, in order to determine if *E. amylovora* produced AHLs, purification of AHLs was performed from a 10 l of *E. amylovora* IPV-BO 1077/7 spent supernatant by extraction, HPLC and TLC as described in Section 2. The detection of AHLs in TLC plates was visualized by making use of *E. coli* JM109 (pSB401) which induced light emission in the presence of AHLs. Fig. 1 depicts the result of this analysis showing that one spot was detected in one of the fractions after HPLC meaning that this *E. amylovora* strain produces at least one AHL molecule. Characterization of this AHL was performed by examination of the *R* of the spot on the TLC with respect to standard reference samples and it was deduced that this molecule is most likely a *N*- (3-oxo-hexanoyl)-homoserine lactone (3-oxo-C6-AHL) (Fig. 1). As apparently the spot on the TLC did not produce a tailing effect, it is possible that the AHL produced by *E. amylovora* is a 3-hydroxysubstituted C6-AHL as
this molecule migrates with the same mobility as its 3-oxo analog but the spot does not tail [14]. Finally, since the spot shown in Fig. 1 corresponds to the amount present in 650 ml of spent supernatant, it is concluded that under conditions of controlled in vitro growth this E. amylovora strain produced very little amount of this AHL molecule. This direct biodetection must be used with caution as detection is limited to which AHL the biosensor will respond. Plasmid pSB401 is a LuxR based biosensor which is rather sensitive and detects well C6 type of AHL molecules[9] thus also providing a good indication of the amount of AHL molecules present in the TLC. This low level production of AHL by E. amylovora raises the question of whether this AHL-quorum sensing system requires very low levels for its functioning or possibly that this system is under tight regulation. The characterization of AHL molecules produced was also determined in other nine E. amylovora strains isolated from various host plants and regions of Italy (Table 1); namely the strains were IPV-BO 5039, IPV-BO 5357, IPV-BO 5359, IPV-BO 5452, IPV-BO 5466, IPV-BO5468, IPV-BO 5010, IPV-BO 5010 and IPV-BO 4853. AHLs were purified from 200 ml liquid cultures in rich medium and all strains as detected in TLC with E. coli (pSB401) produced the same spot as detected with E. amylovora IPV-BO 1077/7 (data not shown). It was concluded that production of this AHL was conserved in E. amylovora and to our knowledge this is the first report of AHL production in this species. In addition, from the purification and analysis of 200 ml of spent supernatant it was concluded that all E. amylovora strains produced similar low amounts of AHLS.

3.2. Evidence for the presence of luxIR homologs in E. amylovora

After having demonstrated the presence of AHL molecules, it was of interest to verify if the corresponding luxIR homologs of E. amylovora, which are responsible for the synthesis and response to the AHL molecule, were present in the chromosome. In order to demonstrate this, two oligonucleotides were designed based on the expIR sequence of closely related E. carotovora [12]. Consequently, using two oligonucleotides as primer pairs in a PCR reaction (see Section 2) resulted in the amplification of an expected fragment of 223 bp (Accession No. AJ841286) which displayed 90% identity with expIR corresponding to the last 120 bp of a luxI homolog and 100 bp of the end of a luxR homolog (data not shown). This indicated that like in E. carotovora, also in E. amylovora the luxIR homologs are convergently transcribed and being highly identical in primary structure. Interestingly, E. carotovora produces a N-(3-oxo-hexanoyl)-homoserine lactone (3-oxo-C6-AHL) [12], the probable AHL produced by E. amylovora (see above).

3.3. Detection of AHL autoinducers from E. amylovora IPV-BO 1077/7 in planta

Following the observation that E. amylovora OMP-BO 1077/7 produces one AHL molecule (see above), it was of interest to determine if it also produces the signal molecule in planta. After 4 days at 24 °C, all the inoculated shoots showed apical necrosis with dark brown discoloration which spread downwards for approximately 1–3 cm below the inoculation point. Six segments, 1 cm long, were cut from the symptomless section of each shoot at increasing distances from the border of necrosis and were used to assess the CFU/g of plant tissue (Fig. 2(a)). As depicted, the bacteria colonized the plant very efficiently also detecting 2 x 10⁸ CFU/g at 17.5 cm from the necrosis front. Organic extracts of the plant infected material were made and then subjected to HPLC and TLC resulting in the detection of a AHL molecule with the same Rf value of the AHL produced from the same E. amylovora strain when grown in vitro (Fig. 2(b)). The same purification procedure was made using the same amount of healthy uninfected plant tissue material and this did not reveal any positive spot on the TLC overlaid with sensor E. coli (pSB401) (data not shown). This observation of AHL presence in planta, indicates that the AHL-dependent
The quorum sensing system is functional in planta raising the important question of its role in plant colonization and pathogenesis. Future work will determine the role of quorum sensing in the disease of this important plant pathogen possibly providing a target for the control of the disease.

Acknowledgements

We thank P. Williams (University of Nottingham) for supplying synthetic AHL standards.

References