Esterase SeE of *Streptococcus equi* ssp. *equi* is a novel nonspecific carboxylic ester hydrolase

Gang Xie, Mengyao Liu, Hui Zhu & Benfang Lei

Veterinary Molecular Biology, Montana State University, Bozeman, MT, USA

Abstract

Extracellular carboxylic ester hydrolases are produced by many bacterial pathogens and have been shown recently to be important for virulence of some pathogens. However, these hydrolases are poorly characterized in enzymatic activity. This study prepared and characterized the secreted ester hydrolase of *Streptococcus equi* ssp. *equi* (designated SeE for *S. equi* esterase). SeE hydrolyzes ethyl acetate, acetylsalicylic acid, and tributyrin but not ethyl butyrate. This substrate specificity pattern does not match those of the three conventional types of nonspecific carboxylic ester hydrolases (carboxylesterases, arylesterases, and acetylesterases).

To determine whether SeE has lipase activity, a number of triglycerides and vinyl esters were tested in SeE-catalyzed hydrolysis. SeE does not hydrolyze triglycerides and vinyl esters of long-chain carboxylic acids nor display interfacial activation, indicating that SeE is not a lipase. Like the conventional carboxylesterases, SeE is inhibited by di-isopropylfluorophosphate. These findings indicate that SeE is a novel carboxylesterase with optimal activity for acetyl esters.

Introduction

Carboxylic ester hydrolases are a diverse group of enzymes that hydrolyze carboxylic esters. They can be divided into nonspecific and specific carboxylic ester hydrolases, and the former can be divided into lipases and esterases. Lipases catalyze hydrolysis of both short-chain (water-soluble) and long-chain (water-insoluble) triglycerides and are usually interfacially activated with an abrupt increase in activity when substrates form emulsions. On the other hand, esterases act on only short-chain triglycerides in solution and are not interfacially activated in substrate emulsions. Besides triglycerides, vinyl esters have also been used to distinguish esterases from lipases. Unlike lipases, esterases are inactive against long-chain vinyl esters in solution or emulsion (Chahinian et al., 2002).

Nonspecific carboxylic ester hydrolases can also be classified into carboxylesterase, arylesterase and acetylesterase based on substrate specificity using ethyl acetate, ethyl butyrate, tributyrin and phenyl acetate as well as their sensitivity to di-isopropylfluorophosphate (DFP) (Whitaker, 1972). Phenyl acetate is hydrolyzed by all the three types of nonspecific carboxylic ester hydrolases, while ethyl acetate is hydrolyzed by carboxylesterases and acetylesterases but not by arylesterases. Ethyl butyrate and tributyrin are hydrolyzed only by carboxylesterases, and carboxylesterases and some arylesterases are inhibited by DFP (Whitaker, 1972; Fenster et al., 2003).

It has been known that esterases are widespread in nonpathogenic and pathogenic bacteria (Stock et al., 1961; Bornscheuer, 2002). However, the roles of esterases in virulence and pathogenesis of pathogenic bacteria are largely unknown. Active and passive immunizations with the secreted esterase of Group A *Streptococcus* protect mice against subcutaneous infection of Group A *Streptococcus* (Liu et al., 2007). A cell wall-anchored carboxylesterase is required for virulence in *Mycobacterium tuberculosis* (Lun & Bishai, 2007), and a putative esterase was among the genes required for lung infection in mice caused by *Streptococcus pneumoniae* in a large-scale screen (Hava & Camilli, 2002). Nevertheless, the enzymatic activities of these extracellular esterases have not been characterized in detail, although an intracellular esterase, Rv1399c, of *M. tuberculosis* has been characterized (Canaan et al., 2004). The horse pathogen *Streptococcus equi* ssp. *equi*, which causes equine strangles (Harrington et al., 2002), has a homologue of the secreted...
esterase of Group A Streptococcus (designated SeE for S. equi esterase). We prepared recombinant SeE and characterized its enzymatic activity. Our results indicate that SeE is a novel nonspecific carboxylic ester hydrolase.

Materials and methods

Materials and bacterial strain

Tripropionin was purchased from TCI America (Portland, OR). Vinyl propionin, vinyl butyrate, vinyl laurate, tributy-rin, triocanoin and lipase from Mucor meihei (5350 U mg⁻¹ solid) were purchased from Sigma (St. Louis, MO). Acetyl-salicylic acid, triacetin, and ethyl butyrate were purchased from Fisher Scientific (Fair Lawn, NJ).

Gene cloning

From Fisher Scientific (Fair Lawn, NJ). Acetyn, trioctanoin and lipase from OR). Vinyl propionin, vinyl butyrate, vinyl laurate, tributy-rin, triocanoin and lipase from Mucor meihei (5350 U mg⁻¹ solid) were purchased from Sigma (St. Louis, MO). Acetylsalicylic acid, triacetin, and ethyl butyrate were purchased from Fisher Scientific (Fair Lawn, NJ). Streptococcus equi strain SEM1 has been described (Liu et al., 2008).

Purification of recombinant SeE

The SEE gene encoding the secreted esterase of S. equi was PCR cloned from strain SEM1 using primers 5'-GGGCACGCGATCCTGGAAAAGCTG-3' and 5'-TCTTATTTTTGGGGTTCGTACTC-3'. The PCR product was digested with EcoRI and NcoI and was ligated into pET-His (Lei et al., 2003) at the EcoRI and NcoI sites to yield the plasmid pSEE. Recombinant SeE made from this construct had 12 amino acid residues, MHHHHHHLETMG, fused to the second amino acid residue, Thr, of mature SeE. The cloned gene was sequenced to rule out spurious mutations.

SeE activity assay

The enzymatic activity of SeE was determined with poten-tiometric titration using a pH-stat (Model 360, Denver Instrument), as described previously with minor modifications (Chahinian et al., 2002). Titration with 0.02 N NaOH was performed at 25 °C for 3 min in 25 mL of 2.0 mM Tris-HCl, pH 7.6, containing SeE and substrate at specified concentrations. Hydrolysis rate was measured from the slope of the plot of the volume of NaOH added vs. time. Enzyme activity was defined as micromoles of acid formed min⁻¹ mg⁻¹ SeE protein.

Inhibition of SeE activity by DFP

SeE at 0.26 mg mL⁻¹ in 100 μL of 2 mM Tris-HCl, pH 7.4, was incubated with DFP at concentrations from 0.0 to 100 μM at 37 °C for 30 min, and the remaining activity of the treated SeE was determined using 100 mM vinyl propionate as described above.

SeE stability at acidic and basic pH

SeE at 0.26 mg mL⁻¹ was incubated at 25 °C for 1 h in the buffers at pH from 4 to 9 that were same as those used by Canaan et al. (2004), and the remaining activity of the treated SeE was determined using 100 mM vinyl propionate as described above.

Temperature dependence of SeE activity

To evaluate the effects of temperature on SeE activity and stability, SeE activity was determined at 10, 20, 30, 40, 50 and 60 °C for 5 min using 100 mM vinyl propionate as described above.

Nucleotide sequence accession number

The GenBank accession number for the nucleotide sequence of the S. equi see gene is EU938321.

Results

SeE gene and protein

A BLAST search of available S. equi genome (http://www.sanger.ac.uk/Projects/S_equi) with the see gene of Group A Strepto-coccus identified the esterase gene of S. equi, see, which encodes a 345-amino-acid protein with an inferred molecular mass of 39 358 Da. The inferred protein has a putative 32-amino-acid secretion signal sequence. The See and SeE proteins share 62% sequence identity (72% similarity). To obtain recombinant SeE, the see gene was cloned, and recombinant SeE protein was overexpressed in E. coli and purified to > 95% purity as determined using sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis (data not shown). SeE was detected in...
the culture supernatant of all five S. equi strains tested and had specific antibody in convalescent sera of all five horses with strangles (data not shown), indicating that SeE is produced in vitro and in vivo.

SeE does not belong to the conventional three types of nonspecific carboxylic ester hydrolases

Differential specificities of esterases for substrates ethyl acetate, phenyl acetate, ethyl butyrate and tributyrin have been used to divide nonspecific carboxylic ester hydrolases into groups of carboxylesterases, arylesterases and acetylesterases. We used acetylsalicylic acid, a derivative of phenyl acetate, and the other substrates to determine whether SeE is a member of one of these esterase families. SeE-catalyzed ester hydrolysis was monitored with potentiometric titration using a pH-stat in which NaOH was automatically pumped in to neutralize released acid and keep pH of the reaction solution constant. After SeE protein was mixed with 25 mM ethyl acetate, 0.02 M NaOH was pumped in at a constant rate of 0.06 mL min⁻¹, the slope of the plot of the accumulative NaOH volume vs. time (Fig. 1a). As expected, no hydrolysis was observed in a control reaction without SeE (Fig. 1a). These results indicate that SeE can catalyze hydrolysis of ethyl acetate. From the rate of NaOH addition, an observed reaction rate was calculated to be that 23 μmol ethyl acetate was hydrolyzed per minute by 1 mg SeE. The reaction was repeated at other ethyl acetate concentrations, and the observed rate increased hyperbolically with increasing substrate concentration (Fig. 1b). Double-reciprocal plotting analysis of the data in Fig. 1b indicates that the reaction catalyzed by SeE follows the Michaelis–Menten model (Fig. 1c). According to the slope and intercept on the y-axis in Fig. 1c, the Michaelis constant (K_m) and specific activity of SeE were calculated to be 56 mM and 68 μmol min⁻¹ mg⁻¹, respectively (Table 1). Because arylesterases do not hydrolyze ethyl acetate, the ability of SeE to hydrolyze ethyl acetate indicates that it is not an arylesterase.

We next tested the activity of SeE on the other substrates. SeE cannot hydrolyze ethyl butyrate (Fig. 2a). Because carboxylesterases, but not arylesterases, hydrolyze ethyl butyrate, the inability of SeE to hydrolyze ethyl butyrate indicates that SeE is not a member of the conventional carboxylesterase. This result also suggests that SeE may be an acetylesterase, which cannot hydrolyze tributyrin. However, SeE hydrolyzes tributyrin with a specific activity of 3.4 μmol min⁻¹ mg⁻¹ using an optimal substrate concentration (Fig. 2a). These results indicate that SeE is not an acetylesterase. Thus, SeE does not belong to any of the three conventional nonspecific carboxylic ester hydrolases.

Ability to hydrolyze phenyl acetate appears to be a common feature of nonspecific carboxylic ester hydrolases because all the three types of nonspecific carboxylic ester hydrolases can hydrolyze phenyl acetate. Therefore, we tested whether SeE also hydrolyzes phenyl acetate-type ester. SeE can hydrolyze acetylsalicylic acid, a derivative of phenyl acetate. The reaction shows a hyperbolic relationship between the observed rate of hydrolysis and substrate concentration (Fig. 2b) and follows the Michaelis–Menten model with a K_m value of 3.3 mM and a specific activity of
This result supports the hypothesis that SeE is a member of nonspecific carboxylic ester hydrolases.

Inhibition of SeE activity by DFP

DFP is a potent inhibitor of carboxylesterases and some arylesterases but not acetylesterases (Whitaker, 1972; Fenster et al., 2003). Whether SeE is inhibited by DFP was tested to further confirm that SeE is not an acetylesterase. SeE was incubated with DFP from 0 to 100 \(\mu \text{M} \) for 30 min, and the remaining activity of the treated SeE was determined using 100 mM vinyl propionate. Presented are the percentages of inhibition at the indicated DFP concentrations. 44 \(\mu \text{mol min}^{-1} \text{mg}^{-1} \). This result supports the hypothesis that SeE is a member of nonspecific carboxylic ester hydrolases.

SeE does not have lipase activity

Nonspecific carboxylic ester hydrolases can be either esterases or lipases. One distinction between esterases and lipases is that lipases, but not esterases, display interfacial activation when substrates turn from a solution to emulsion. To use this criterion to test whether SeE is a lipase, we compared the activities of SeE and \(M. \) meihei lipase on tripripionin, which has the solubility of 12.5 mM in water and forms emulsion at > 12.5 mM. \(M. \) meihei lipase had low activities to hydrolyze tripripionin at up to 12.5 mM but had much higher activities when tripripionin was at > 12.5 mM (Fig. 4). In contrast, SeE activity increased hyperbolically with increasing substrate concentration and reached its maximal value at tripripionin concentration slightly beyond 12.5 mM without obvious interfacial activation. Similar results were obtained using vinyl propionate (data not shown). These results suggest that SeE is not a lipase.

Table 1. Specific activities and \(K_m \) of SeE and \(Mucor \) meihei lipase against various substrates

<table>
<thead>
<tr>
<th>Substrates</th>
<th>SeE Specific activity ((\mu \text{mol min}^{-1} \text{mg}^{-1}))</th>
<th>(K_m) (mM)</th>
<th>Lipase Specific activity ((\mu \text{mol min}^{-1} \text{mg}^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethyl acetate</td>
<td>68*</td>
<td>56</td>
<td>2*</td>
</tr>
<tr>
<td>Ethyl butyrate</td>
<td>0</td>
<td>13*</td>
<td></td>
</tr>
<tr>
<td>Tributyrin</td>
<td>3*</td>
<td>133*</td>
<td></td>
</tr>
<tr>
<td>Acetylsalicylic acid</td>
<td>44*</td>
<td>3</td>
<td>1*</td>
</tr>
<tr>
<td>Triacetin</td>
<td>513*</td>
<td>203</td>
<td>2*</td>
</tr>
<tr>
<td>Tripropionin</td>
<td>149* (73*)</td>
<td>29</td>
<td>22*</td>
</tr>
<tr>
<td>Triocytanin</td>
<td>0</td>
<td>111*</td>
<td></td>
</tr>
<tr>
<td>Vinyl propionate</td>
<td>815*</td>
<td>68</td>
<td>573*</td>
</tr>
<tr>
<td>Vinyl butyrate</td>
<td>24</td>
<td>412*</td>
<td></td>
</tr>
<tr>
<td>Vinyl laurate</td>
<td>0</td>
<td>13*</td>
<td></td>
</tr>
<tr>
<td>Acetylcholine</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

*The value was obtained by using double-reciprocal analysis of enzyme activity at substrate concentrations lower than solubility.

The activity was measured at optimal substrate concentration.

The activity was determined at 100 mM substrate.

Fig. 2. SeE hydrolyzes tributyrin (a) and acetylsalicylic acid (b) but not ethyl butyrate (a). The hydrolysis assays were performed as in Fig. 1, and the hydrolysis rates of the indicated reactions are presented as a function of substrate concentration.

Fig. 3. Inhibition of SeE activity by DFP. SeE was incubated with DFP at 37°C for 30 min, and the remaining activity of the treated SeE was determined using 100 mM vinyl propionate. Presented are the percentages of inhibition at the indicated DFP concentrations.
Another distinction between esterases and lipases is that esterases hydrolyze short-chain triglycerides and vinyl esters, whereas lipases are active for both short- and long-chain triglycerides and vinyl esters. We tested the activities of SeE and *M. meihei* lipase for the following substrates: triacetin, tripropionin, trioctanoin, vinyl propionate, vinyl butyrate and vinyl laurate. SeE is active for the short-chain substrates triacetin, tripropionin, tributyrin, vinyl propionate and vinyl butyrate but inactive for the long-chain substrates trioctanoin and vinyl laurate (Table 1). In contrast, *M. meihei* lipase is active for all these substrates. These results further confirm that SeE is not a lipase.

Specific carboxylic ester hydrolases include phospholipases and acetylcholinesterases. Because SeE has no activity for the long-chain esters, SeE is not expected to be a phospholipase. SeE was found to be inactive for acetylcholine (Table 1). This result further supports the hypothesis that SeE is a non-specific carboxylic ester hydrolase.

Stability at acidic and basic pH

The activities of SeE after 1-h incubation at pH 4 and 5 were < 20% of the activity of SeE after 1-h incubation at pH 7, whereas only a slight decrease was observed after incubation at pH 8 and 9 (Fig. 5a), indicating that SeE is not stable in acidic solutions.

Temperature dependence of SeE activity

Time courses of NaOH titration for SeE activity at different temperatures are shown in Fig. 5b. The cumulative NaOH added as a function of time at different temperatures shows that the hydrolysis rate increased with temperature with an optimal temperature at 40 °C, indicating that higher temperature enhances reaction rates. However, the reaction rates dramatically slowed down with time at 50 and 60 °C, indicating that SeE was rapidly inactivated at these temperatures.

Discussion

Many bacterial pathogens produce extracellular carboxylic ester hydrolases. Some recent publications report that these proteins are important for virulence (Hava & Camilli, 2002; Liu *et al.*, 2007; Lun & Bishai, 2007). These proteins are poorly characterized in enzymatic activity, and whether these proteins are different from other characterized carboxylic ester hydrolases is not known. We have characterized the enzymatic activity of SeE by *S. equi*. We found that SeE does not belong to any of the three conventional families of nonspecific carboxylic ester hydrolases nor has lipase activity. Our results thus identify SeE as a secreted novel nonspecific carboxylic esterase.

SeE is ruled out as a member of arylesterases or acetyl esterases according to the observed substrate specificity. Even though SeE is inhibited by DFP-like carboxylesterases, unlike these conventional carboxylesterases, SeE does not hydrolyze ethyl butyrate. SeE hydrolyzes many carboxylic esters of aliphatic and aromatic alcohols like conventional carboxylesterases, suggesting that SeE is similar to carboxylesterases.
The inability of SeE to hydrolyze ethyl butyrate is a surprise. A possible explanation for this outcome is that the binding site for the acyl group of esters is more suitable to ethyl group in SeE. If this is true, the ethyl group of ethyl butyrate, the alcohol moiety, may occupy the site for the acyl group, blocking the catalysis. SeE is active against vinyl butyrate, and the specific activity of SeE for triacetin is 170 times higher than that for tributyrin, supporting this interpretation. In this sense, SeE is similar to acetylesterases. However, SeE is not a typical acetylesterase because it is inhibited by DFP. Our results thus suggest that SeE is a carboxylesterase with optimal activity against acetyl esters. This enzymatic feature might have been evolved for possible function of SeE in modification of the host’s upper respiratory tract during S. equi infection. Streptococcus equi causes infection of the upper respiratory tract, which is covered by mucosa. The major component of the mucosa is mucin, a glycoprotein with O-acetylated sialic acids at the outermost ends of glycans (Reuter et al., 1983; Tiralongo et al., 2000). SeE may modify the mucosa by hydrolyzing the O-acetyl group of mucin.

Because SeE is inhibited by DFP, a serine-reacting compound (Whitaker, 1972), SeE must have a seryl hydroxyl group in its active site, a possibility supported by the fact that SeE shares high sequence identity with the serine esterase Sse of group A Streptococci (Liu et al., 2006). Both SeE and Sse contain the GXSXG motif of serine esterases (Okazaki et al., 2006), and the serine residue of the GXSXG motif in Sse is indeed critical for its esterase activity (Liu et al., 2007).

SeE is very similar to M. tuberculosis esterase Rv1399c (Canaan et al., 2004) in the instability to acidic pH and high temperatures. However, the pocket for acyl binding in SeE is apparently smaller than that in Rv1399c because SeE has higher activities for acetyl esters than those for the same types of butyryl esters, whereas Rv1399c has higher activities for propionyl and butyryl esters than acetyl esters (Canaan et al., 2004). This again supports the idea that SeE primarily targets acetyl esters.

Acknowledgements

This work was supported by USDA NRI/CSREES grant 2007-35204-18306 and NIH grant P20 RR-020185, USDA Formula Funds and the Montana State University Agricultural Experimental Station.

References

