Supporting information

Effects on IS*1* transposition frequency of a mutation in the *ygjD* gene involved in an essential tRNA Modification in *Escherichia coli*

Chika Hashimoto¹, Masayuki Hashimoto², Hirofumi Honda¹, and Jun-ichi Kato¹

¹Department of Biological Sciences, Graduate Schools of Science and Engineering, Tokyo Metropolitan University, 1-1 Minamiohsawa, Hachioji, Tokyo 192-0397, Japan.

² Institute of Molecular Medicine, Center of Infectious Disease and Signal Transduction, National Cheng Kung University Medical College, Tainan City, Taiwan.

*Correspondence: Jun-ichi Kato, Department of Biological Sciences, Graduate Schools of Science and Engineering, Tokyo Metropolitan University, 1-1 Minamiohsawa, Hachioji, Tokyo 192-0397, Japan.

Figure legends

Fig. S1. Cloning of the junction regions of the isertion / deletion in the $ygjD_{sup}$ mutant genome. (a) The original $ygjD_{sup}$ mutant has disruptions of the *recA* ($\Delta recA$:Tc) and the ygjD genes ($\Delta ygjD$:Sm) and the plasmid (mini-F- $ygjD^{ts1}(Ap)$). (b) To obtain the strains, in which the plasmids pSG76A2-A or -B were integrated into the $ygjD_{sup}$ chromosome by homologous recombination, two plasmids, pACYC184- $ygjD^+$ and mini-F-*recA*⁺ (Km), were introduced into the $ygjD_{sup}$ mutant. (c) Then the plasmids pSG76A2-A or -B and a helper plasmid, pPIR-K, were introduced into the resultant (d) And the strains with the integrated plasmids were obtained at 42° C. The strain. chromosomal DNA was prepared, digested with the restriction enzymes, ligated, and introduced into DH1 together with pPIR-K. The plasmids carrying the junction regions were obtained and sequenced. The arrows on the cloned plasmids indicate the primers for sequencing.

Fig. S2. The PFGE patterns predicted from the genome sequences. Because Tn10 has an *Xba*I site, a 206,624 base pair fragment was split to ca. 171 KB and ca. 45 kb

bands. In the presence of Dam methylase, two *Xba*I sites (3,861,916 and 4,308,586) are not digested by *Xba*I.

Fig. S3. Growth of the $ygjD_{sup}$ mutant with the *dinG*, *rep*, and *rnhA* multi-copy plasmids. The $ygjD_{sup}$ mutant and the isogenic $ygjD^+$ strain were transformed with pACYC184 and its derivatives carrying the *dinG*, *rep*, and *rnhA* genes. The transformants were incubated on Antibiotic Medium 3 containing Cm and streptomycin at 30, 37, or 42°C.

Fig. S4. Junction sequences of the insertion / deletion in the $ygjD_{sup}$ mutant genome. Sequences of the three junctions are shown: insB - yjgJ (4,517,262 - 4,472,838); yjhG - insA (4,520,435 - insA); insB - ubiD (insB - 4,023,119). The putative junctions are indicated by arrows.

Fig. S1. Hashimoto et al.

(1) <i>Not</i> l		(2) Xbal (-Dam methylation)		(3) Xbal (+Dam methylation)	
<mg1655></mg1655>	< ygjD _{sup} >	<mg1655></mg1655>	< ygjD _{sup} >	< MG1655 >	< ygjD _{sup} >
1003721 base	1003721 base	440059 base	440059 base	440059 base	440059 base
	377505 base	335008 base	335008 base	335008 base	335008 base
361369 base	361369 base	323965 base	323965 base	323965 base	323965 base
358533 base		269545 base	269545 base	297926 base	297926 base
281227 base	281227 base	262133 base	262133 base		276555 base
273618 base	273618 base	254644 base	254644 base	269545 base	269545 base
261674 base	261674 base	248418 base	248418 base	262133 base	262133 base
250536 base	250536 base	224937 base	224937 base	254644 base	254644 base
250163 base	250163 base	214863 base	214863 base	248418 base	248418 base
248520 base	248520 base	206624 base	206624 base	224937 base	224937 base
	248520 base	197148 base	197148 base	214863 base	214863 base
214239 base	214239 base		195472 base	206624 base	(206624 base)
207784 base	207784 base		175777 base		195472 base
193356 base	193356 base	155297 base	155297 base	155297 base	155297 base
	174719 base	149210 base	149210 base	149210 base	149210 base
156067 base	156067 base	117291 base	117291 base	137243 base	137243 base
132769 base	132769 base	106065 base	106065 base	117291 base	117291 base
108684 base	108684 base	105763 base	105763 base	106065 base	106065 base
98648 base	98648 base	105747 base	105747 base	105763 base	105763 base
92214 base	92214 base	100778 base	100778 base	105747 base	105747 base
40597 base	40597 base		100778 base	94058 base	94058 base
36074 base	36074 base	94058 base	94058 base	86685 base	86685 base
35142 base	35142 base	86685 base	86685 base	72559 base	72559 base
15443 base	15443 base	79553 base	79553 base	66883 base	
14962 base	14962 base	72559 base	72559 base	48824 base	48824 base
	4335 base	66883 base		48417 base	48417 base
4335 base	4335 base	57690 base	57690 base	41402 base	41402 base
		48824 base	48824 base		41402 base
		48417 base	48417 base	39700 base	39700 base
		41402 base	41402 base	33538 base	33538 base
			41402 base	28987 base	28987 base
		39700 base	39700 base	28538 base	28538 base
		33538 base	33538 base	26503 base	26503 base
		28987 base	28987 base	21775 base	21775 base
		28538 base	28538 base	14081 base	14081 base
		26503 base	26503 base	12523 base	12523 base
		21775 base	21775 base	12223 base	12223 base
		14081 base	14081 base	6055 base	6055 base
		12523 base	12523 base	2067 base	2067 base
		12223 base	12223 base	119 base	119 base
		6055 base	6055 base		
		2067 base	2067 base		
		119 base	119 base		

Fig. S2. Hashimoto et al.

Fig. S3 Hashimoto *et al*.

insB-yjgJ

ујgJ	АААСААСGTTTCATTTCTATCGTTATACGAAAAGATAATCAATTCCGCT
genome	CACTATCAGTAAGTTGGAGTCATTACCCGAAAAGATAATCAATTCCGCT
insB	CACTATCAATAAGTTGGAGTCATTACCGACCATGTTTATTTCATACATT

yjhG-insA

	↑
insA	CTGCCCTAAAGGATGGGGATTTCGGTAATGCTGCCAACTTACTGATTTA
genome	CCGGAGGCCCCATCGGTAAATTAGGTGATGCTGCCAACTTACTGATTTA
yjhG	CCGGAGGCCCCATCGGTAAATTACGCACCGGGGATTTAATTGAAATTAA

ubiD-insB

insB	ACCCACAATGTATGAAATAAACATGGTCGGTAATGACTCCAACTTATTG
genome	CGGCACGCAAAGTGCGGTCAGCAATTTCGGTAATGACTCCAACTTATTG
ubiD	CGGCACGCAAAGTGCGGTCAGCAATTTCAGTGATTTCCAGATGCGGATC

Fig. S4. Hashimoto et al.

Table S1 Primer sequences

Primer name	Sequence
182-34	5'-CCGGATCCTTTTCCCGTCAACCTTGATG-3'
182-35	5'-CCGGATCCTGCGATAGTCCATTTACGAC-3'
454-59	5'-CCGGATCCACTGACTTGTTGTACCAGGTC-3'
454-60	5'-CCGGATCCTTGCTCAGGAAAGCCAGTGG-3'
495-1	5'-CACCGAGGATGAGAACTGTC-3'
500-9	5'-CATTTCCCCGGTTTAATACAGGTATACAAAAGTGGATAGACTGGTGTCCCTGTTGATACC-3'
500-10	5'-CCATATCTACATGGGGCAGTTGTTCATTCTTTTAGTGTGGCACTTATTCAGGCGTAGCAC-3'
500-11	5'ATGGGTCGCTACCCTGTTATGAGAGGACGTTATGCCACTACTGGTGTCCCTGTTGATACC-3'
500-12	5'-ACAACAGGTTGGCTCACTGGCAAGAACCCGATTATAAAACCACTTATTCAGGCGTAGCAC-3'
500-13	5'-CAGGGCATTTTACCAGTCTGAGGAGAAACTCATGTCTGTTCTGGTGTCCCTGTTGATACC-3'
500-14	5'-TTCAGGTGTCTGGATGTTTTTATTTATGCTTTCAGTTTTTCACTTATTCAGGCGTAGCAC-3'
500-29	5'-CCCTGCAGCGCCAAGCTGGTTGCGCAGGTTTTC-3'
500-30	5'-CCGAGCTCAATCAGTAAGTTGGCAGCATTACCG-3'
500-32	5'-CCGCATGCATCGCATTCTCTATCGCTTTATCGG-3'
500-34	5'-CCGAATTCGCTTACCACCGATTCTTGAAGCATC-3'
500-35	5'-AAAGGTGTGGCGAAGGTTTATCTGTCCGAG-3'
500-36	5'-TAACCTCGCGCATACAACCGGGCAGTGATG-3'
tatD-CmN	5'-ACAGTGTGAAGAATACCGAGTTCCGCAAACTCTAAAACGCCTGGTGTCCCTGTTGATACC-3'
tatD-CmC	5'-CCGTCAGGGCGGTTGTCATATGGAGTACAGGATGTTTGATCACTTATTCAGGCGTAGCAC-3'
fadA-CmN	5'-CGCATCCGGCAAGTGGTTAAACCCGCTCAAACACCGTCGCCTGGTGTCCCTGTTGATACC-3'
fadA-CmC	5'-GAAAACGGCTTAAGGAGTCACAATGGAACAGGTTGTCATTCACTTATTCAGGCGTAGCAC-3'
ppc-CmN	5'-GGTTTGCAGAAGAGGAAGATTAGCCGGTATTACGCATACCCTGGTGTCCCTGTTGATACC-3'
ppc-CmC	5'-TCAAACGATAAGATGGGGTGTCTGGGGTAATATGAACGAAC
malK-CmN	5'-AGGCTTTGTGTGTTTTGTGGGGTGCTTAAACGCCCGGCTCCTGGTGTCCCTGTTGATACC-3'
malK-CmC	5'-CGATGACAGGTTGTTACAAAGGGAGAAGGGCATGGCGAGCCACTTATTCAGGCGTAGCAC-3'
mgtA-CmN	5'-ATCGTGCCCAGTTTATTCTTTATTGCCAGCCGTAACGACGCTGGTGTCCCTGTTGATACC-3'
mgtA-CmC	5'-GGGACTCCTTATGTTTAAAGAAATTTTTACCCGGCTCATTCACTTATTCAGGCGTAGCAC-3'
idnT-CmN	5'-CCCCGAAACTACATCACAATATTTTATTCTTTCAGTGCAACTGGTGTCCCTGTTGATACC-3'
idnT-CmC	5'-GCACTAATAAGAGATAAAGACTATGCCATTAATCATTATTCACTTATTCAGGCGTAGCAC-3'
groES-CmN	5'-AGATACGGACTTTCTCAAAGGAGAGTTATCAATGAATATT cTggTgTcccTgTTgATAcc-3'
groEL-CmC	5'-GGTTTGTTTATTTCTGCGAGGTGCAGGGCAATTACATCAT cAcTTATTcAggcgTAgcAc-3'
lacl-CmN	5'-GAGTCAATTCAGGGTGGTGAATGTGAAACCAGTAACGTTA cTggTgTcccTgTTgATAcc-3'
lacA-CmC	5'-gcgcagcgtatcaggcaatttttataatttaaactgacgacAcTTATTcAggcgTAgcAc-3'

Gene	<i>ygjD</i> (Ts) signal intensity	Wild-type signal intensity	Ratio
dinC	326.0	284.9	1.1443
aing	453.4	515.6	0.8794
	909.1	1272.0	0.7147
rep	652.9	463.9	1.2074
	1664.8	1649.3	1.0094
uviD	1457.2	1352.6	1.0773
reafed	1217.4	1045.9	1.1640
ΠΙΟ	1054.5	707.3	1.4909
rph A	1823.9	1327.2	1.3742
mnA	1659.4	1881.8	0.8818

Table S2 Transcription of collision-related genes in the $ygjD^{ts}$ mutant.

The data are derived from the microarray experiments (Hashimoto et al., 2011).

Upper, cells grown at 37° C; lower, cells grown at 30° C