RESEARCH LETTER – Pathogens & Pathogenicity

Lipopolysaccharide surface structure does not influence IcsA polarity

Matthew Thomas Doyle¹, Marcin Grabowicz², Kerrie Leanne May² and Renato Morona¹,*

¹Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia and ²Department of Molecular Biology, Princeton University, Princeton 08544-1014, USA

*Corresponding author: Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Gate 8 Victoria Drive, Molecular Life Science Building, Lab 4.47, Adelaide, SA 5005, Australia. Tel.: (+61) 8 8313 5827; E-mail: renato.morona@adelaide.edu.au

One sentence summary: Investigating the spatial distribution of Shigella flexneri virulence factors lipopolysaccharide and IcsA, and dissecting the models of IcsA polarity augmentation.

Editor: Klaus Hantke

ABSTRACT

Shigella species are the causative agents of human bacillary dysentery. These bacteria spread within the lining of the gut via a process termed actin-based motility whereby an actin ‘tail’ is formed at the bacterial pole. The bacterial outer membrane protein IcsA initiates this process, and crucially is precisely positioned on the bacterial polar surface. Lipopolysaccharide (LPS) O-antigen surface structure has been implicated as an augmenting factor of polarity maintenance due to the apparent dysregulation of IcsA polarity in O-antigen deficient strains. Due to Shigellae having long and short O-antigen chains on their surfaces, it has been proposed that O-antigen chain lengths are asymmetrically distributed to optimize IcsA exposure at the pole and mask exposure laterally. Additionally, it has been proposed that LPS O-antigen restricts IcsA diffusion from the pole by maintaining minimal membrane fluidity. This study utilizes minicells and quantitative microscopy providing data refuting the models of asymmetric masking and membrane diffusion, and supporting a model of symmetric masking of IcsA. We contend that IcsA surface distribution is equivalent between wild-type and O-antigen deficient strains, and that differences in cellular IcsA levels have confounded previous conclusions.

Keywords: outer membrane; bacterial pole; lipopolysaccharide; autotransporter; minicell; Shigella

INTRODUCTION

Shigella species such as Shigella flexneri are human-specific Gram-negative bacterial pathogens that are adapted to the invasion of colonic mucosa leading to dysentery (Niyogi 2005; Lima, Hvat and Lima 2015). The outer membrane autotransporter protein IcsA is essential for intra- and intercellular spreading of S. flexneri in epithelia via the process of actin-based motility (Bernardinii et al. 1989; Lett et al. 1989; Goldberg and Theriot 1995; Kocks et al. 1995; Egile et al. 1999). IcsA is localized to the surface of the old bacterial pole (that which is not derived from the septum of the parent cell) where it binds host cell actin recruiting/polymerizing complexes required for this motility (Egile et al. 1999; Steinhauer et al. 1999; Snapper et al. 2001; Suzuki et al. 2002; May and Morona 2008; Valencia-Gallardo, Carayol and Tran Van Nhieu 2014). Hence, maintenance of an asymmetrical spatial surface distribution is critical for appropriate functioning of IcsA in all Shigellae species. By mechanisms that are yet to be fully elucidated, new IcsA is secreted to the pole after presecretion cytoplasmic accumulation (Charles et al. 2001; Rokney et al. 2009). IcsA surface polarity is also refined by the actions of its specific outer membrane protease IcsP which is localized to
the new cell pole and the septa of dividing bacteria (Egile et al. 1997; Tran, Doyle and Morona 2013). This opposing distribution results in asymmetric IcsA cleavage and refines IcsA surface polarity (Tran, Doyle and Morona 2013).

Lipopolysaccharide (LPS) structure has also been implicated as a modulating factor in IcsA biogenesis, polarity and function. Certainly, S. flexneri spreading is abrogated upon changes in LPS structure (Sandlin et al. 1995; Sandlin, Goldberg and Maurelli 1996; Hong and Payne 1997; Van den Bosch, Manning and Morona 1997). However, there is disagreement in the literature concerning the specific mechanisms by which LPS effects IcsA. For instance, immunofluorescence (IF) microscopy and immunogold electron microscopy studies have reported that IcsA can be found at increased levels along the lateral surface of rough (R-LPS) S. flexneri (strains that lack the O-antigen repeat chain component of LPS), as opposed to the refined polar detection of smooth (S-LPS) wild-type S. flexneri (Sandlin et al. 1995; Van den Bosch, Manning and Morona 1997; Robbins et al. 2001). In explanation, it was proposed that R-LPS strains have higher membrane fluidity (Fig. 1A) resulting in easier diffusion of IcsA away from the pole and down the sides of the bacterium (Robbins et al. 2001). However, this is confounded by the realization that LPS O-antigen chains mask detection of IcsA by limiting antibody access (Morona, Daniels and Van Den Bosch 2003c). Therefore, the refined polar detection of IcsA observed on S. flexneri may not be the complete picture of its actual surface localization. Further complicating is that S. flexneri decorates its surface with two modal lengths of O-antigen repeats: short type (S-LPS; 11–17 repeats) (Morona, van den Bosch and Manning 1995) and very long type (VL-LPS; 90+ repeats) (Hong and Payne 1997) which are regulated by the WzzBsr and WzzBgrs2 inner membrane copolymerases, respectively (Morona, van den Bosch and Manning 1995; Stevenson, Kessler and Reeves 1995; Hong and Payne 1997). It has been hypothesized on multiple occasions that S. flexneri has two types of O-antigen modal lengths to counteract the steric hindrance effect of LPS, whilst retaining protection from host defences and colicins (Morona, Daniels and Van Den Bosch 2003c; Pugsley and Buddelmeijer 2004; Scribano et al. 2014; Tran, Papadopoulos and Morona 2014). In this model, VL-LPS is required for serum resistance, whereas S-LPS minimizes IcsA masking at the pole such that it can access external actin recruiting complexes (Fig. 1B).

Due to the confounding nature of these models (masking, lateral diffusion/membrane fluidity, asymmetric O-antigen chain lengths), the exact effects of LPS on IcsA surface localization remain enigmatic. This work unravels the IcsA-LPS relationship in S. flexneri by first examining whether LPS O-antigen modal chain lengths are asymmetrically distributed in the outer membrane. IcsA localizations in the rough and wild-type membrane are then quantified and directly compared allowing a re-evaluation of the asymmetrical masking and lateral diffusion models. The results obtained challenge current thoughts concerning the LPS-IcsA relationship and provide further insights into IcsA polar positioning.

MATERIALS AND METHODS

Bacterial strains, plasmids and culture

Lists of strains and plasmids utilized in this study are included in Table 1. Shigella flexneri colonies were grown on Congo Red agar for confirmation of virulence plasmid presence before routine growth in Luria–Bertani (LB) media at 37°C with shaking. Unless otherwise stated, bacteria were subcultured to a log-phase OD600 reading of 0.5 before experimental use. When required, broths were supplemented with the following additives at respective concentrations: tetracycline (10 μg mL⁻¹), kanamycin (50 μg mL⁻¹) and ampicillin (50 μg mL⁻¹).

Figure 1. Models of IcsA surface polarity augmentation by LPS. (A) Lateral diffusion model. It has been proposed that R-LPS Shigellas (without O-antigen; Oag) has a higher membrane (M) fluidity causing IcsA (red) deposited at the pole to diffuse away from the pole and down the lateral edge. (B) Model of asymmetrical masking due to O-antigen modal lengths distribution. To optimize the pathogenic role of IcsA in recruiting host actin polymerizing complexes at the pole, it is thought that LPS O-antigen chain lengths may be useful in optimizing IcsA exposure at the pole by the use of S-LPS (medium blue) at the pole and VL-LPS (light blue) on the lateral edges to restrict IcsA exposure. The red cross depicts the notion that LPS O-antigen chains can inhibit access of antibodies to IcsA via steric hindrance.

Table 1. Strains and plasmids used in this study.

<table>
<thead>
<tr>
<th>Strain or Plasmid</th>
<th>Description</th>
<th>LPS Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>2457T</td>
<td>Wild-type S. flexneri 2a</td>
<td>S</td>
</tr>
<tr>
<td>RMA2041</td>
<td>2457T ΔicsA::TcR</td>
<td>S Van den Bosch et al. (2003)</td>
</tr>
<tr>
<td>RMA2043</td>
<td>2457T ΔicsA::TcR ΔrmlD::KmR</td>
<td>R Van den Bosch et al. (2003)</td>
</tr>
<tr>
<td>ETRM230</td>
<td>2457T ΔrmlD::KmR</td>
<td>R Tran, Doyle and Morona (2013)</td>
</tr>
<tr>
<td>MG292</td>
<td>2457T minD::KmR</td>
<td>S This study</td>
</tr>
</tbody>
</table>

Plasmids

<table>
<thead>
<tr>
<th>Strain or Plasmid</th>
<th>Description</th>
<th>LPS Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>pBR322</td>
<td>Medium copy number, colE1 ori, ApR, TcR</td>
<td>Bolivar et al. (1977)</td>
</tr>
<tr>
<td>pKD4</td>
<td>FLP KmR template</td>
<td>Datsenko and Wanner (2000)</td>
</tr>
<tr>
<td>pKMRM96</td>
<td>pGEMT::minCDE, ApR</td>
<td>This study</td>
</tr>
<tr>
<td>pKMRM161</td>
<td>pGEMT::minCD::KmE, ApR</td>
<td>This study</td>
</tr>
</tbody>
</table>

TeC = tetracycline resistance, KmR = kanamycin resistance, ApR = ampicillin resistance, S = S-LPS, R = R-LPS.

Construction of minD mutant

The minCDE locus of S. flexneri 2457T was PCR amplified using oligonucleotides minF (gacttgcctcaatataatcc) and minR (tcttaattaacatatgaatatcctccttag) in minR (tctgtgctgggaagc) that anneal to nt positions 1210181–1210200 and 1208137–1208154 respectively on the 2457T chromosome (Wei et al. 2003). The amplicon was cloned into pGEMT-Easy (Promega) creating pKMRM96 (Table 1). To disrupt the minD gene, the kanamycin resistance (KmR) cassette from pKD4 (Datsenko and Wanner 2000) was amplified using PIPacI (cttaattaagtaggtggagctgcttc) and P2PacI (cttaattaacatatgctctcttgcttgagct) incorporating flanking PacI sites which were used to insert the KmR cassette into the native PacI site within the minD gene in pKMRM96 resulting in pKMRM161 (Table 1). The minD locus containing disrupted minD::KmR was then amplified using minF/R and the amplicon used in recombineering mutagenesis of 2457T minD genomic copy via the λ red recombinase system (Datsenko and Wanner 2000).

Antibodies

Polyclonal rabbit anti-icsA (passenger), rabbit anti-WzzBSer and rabbit anti-WzzBHis were produced and validated as described previously (Van den Bosch, Manning and Morona 1997; Daniels and Morona 1999; Purins et al. 2008). Mouse anti-DnaK monoclonal antibody was from Enzo Life Sciences.

Total bacterial protein samples

1:50 subcultures were grown to log-phase. 5 × 10⁸ of log-phase bacteria were collected by centrifugation (16 000 × g, 1 min, 4°C), resuspended in 100 μL of SDS-PAGE loading buffer (Lugtenberg et al. 1975) and heated to 100°C for 10 min before SDS-PAGE and immunoblot analysis.

Bacterial IcsA labelling

IF staining was conducted essentially as described previously (Tran, Doyle and Morona 2013). All solutions were filtered through a 0.2 μm nitrocellulose filter. 10⁶ log-phase bacteria were harvested from a 1:50 subculture by centrifugation (16 000 × g, 2 min, 20°C), resuspended in 3.7% (v/v) formaldehyde solution (Sigma) in phosphate-buffered saline (PBS) and incubated at 20°C for 20 min. Fixed bacteria were washed twice in PBS before resuspension in 100 μL of PBS. A total of 5 μL of the bacteria was spotted onto sterile round coverslips (at the bottom of a 24-well tray) that were pre-treated with 10% (v/v) poly-L-lysine solution (Sigma) in PBS. Bacteria were centrifuged (775 × g, 5 min, 20°C) and then incubated for 2 h with anti-IcsA diluted 1:100 in PBS containing 10% (v/v) fetal calf serum (FCS). Bacteria were washed three times with PBS and then incubated for 30 min at 37°C with donkey anti-rabbit Alexa Fluor 488 antibody (Invitrogen) diluted 1:100 in PBS containing 10% (v/v) FCS. Bacteria were washed three more times with PBS before mounting with 20% Mowiol 4–88 (Calbiochem), 4 mg mL⁻¹ p-phenylene diamine.

Minicell and whole-cell purification

Separation of minicells and whole cells was conducted as described previously (Achtman et al. 1979). The minicell strain was subcultured (1:20) until log-phase, or subcultured for 16 h to produce stationary-phase cultures. A volume of 250 mL bacteria from both log-phase and stationary-phase cultures was pelleted by centrifugation (8600 × g, 20 min, 4°C) and washed in 10 mL of buffered saline gelatin [BSG; 0.85% (w/v) NaCl, 0.03% (w/v) KH₂PO₄, 0.06% (w/v) Na₂HPO₄, 100 μg mL⁻¹ gelatin]. Bacteria were pelleted again (20 400 × g, 8 min, 4°C) and resuspended in 2 mL of BSG. Bacteria were layered onto sucrose gradients and centrifuged (3300 × g, 30 min, 4°C). The minicell fraction in the middle of the tube was extracted using a syringe. The whole-cell fraction at the bottom of the tube was also collected and diluted in 50 mM Tris pH 7.5. The minicells were pelleted (20 400 × g, 8 min, 4°C), resuspended in 1 mL of BSG and purified once more on a sucrose gradient as described. The minicells were then resuspended (as above) and resuspended in 2 mL of 50 mM Tris pH 7.5. Cell concentrations were normalized on the basis that an OD₆₀₀ = 1.0 represents 5 × 10⁹ whole cells and 2 × 10⁹ minicells.

Minicell and whole-cell membrane protein and LPS analysis

As described previously (Achtman et al. 1979), purified minicells and whole cells were lysed by sonication in 20 mM Tris-HCl pH 8.0, 10 mM NaCl buffer containing 0.1 mg mL⁻¹ DNase, 0.1 mg mL⁻¹ RNase and 0.1 mM phenylmethanesulfonyl fluoride. Unbroken cells were removed by centrifugation (5000 × g, 25 min, 4°C) and the lysate was ultracentrifuged (100 000 × g, 60 min,
The whole membrane pellet was rinsed with buffer, homogenized in 20 mM Tris-HCl pH 8.0, 10 mM NaCl buffer containing 1% (v/v) SDS and incubated on ice for 1 h. This was then ultracentrifuged (as above) and the resulting supernatant collected. Protein content was assessed using a BCA Protein Estimation assay (Pierce). Membrane samples from minicells and whole cells were standardized to equivalent total membrane protein concentration for protein analysis by immunoblot. For LPS analysis, samples were treated with 0.5 mg mL$^{-1}$ Proteinase K in SDS-PAGE loading buffer at 56°C for 16 h and analyzed by SDS-PAGE and silver stain.

Microscopy and quantitation

All images of IF-labelled bacteria were captured using an Olympus IX-7 Microscope and MetaMorph software (Molecular Devices) with a phase contrast 100× oil immersion objective and a 1.5× enlarger. For fluorescence imaging, an X-Cite 120Q lamp was used set at high intensity. All live bacterial imaging was conducted on custom made 1% (w/v) agarose-LB solid media mounts with 37°C incubation. All bacterial IcsA fluorescence images were acquired with 100 ms exposures. Fluorescence images for background correction were taken for each experiment. IcsA fluorescence images for presentation were recoloured using the ICA LUT in ImageJ such that the full intensity spectrum can be easily observed. MetaMorph linescan measurement tools were used to quantitate fluorescence intensities across the perpendicular axis of a point-to-point scan. Scans were conducted from pole-to-pole starting from intense pole, with scan width (perpendicular axis) equal to the bacterium (approximately 20 pixels). For each strain under investigation, cumulative scans were conducted of many bacteria (50 bacteria from each independent experiment ‘n’) that were without a visible septum, resulting in distribution profiles representative of the population.

RESULTS AND DISCUSSION

Any asymmetry in LPS O-antigen chain lengths would dramatically change the apparent IcsA polarity between S-LPS and R-LPS strains and may allow increased exposure of IcsA at the pole. To investigate LPS asymmetry, we constructed an *S. flexneri* minD-strain (MG292; Table 1). MinD (along with MinC and MinE) regulates appropriate positioning for septum formation in bacterial division (Treuner-Lange and Sogaard-Andersen 2014). Mutants in this system form minicells that result from mislocalized septation at the poles (de Boer, Crossley and Rothfield 1989). As such, minicells are rich in polar membrane material compared to whole cells and have been vital for investigations on the polar cytology (Koppelman et al. 2001; Lai et al. 2004). The minD-strain behaved as expected with the formation of free minicells and observed polar budding of minicells (Fig. 2A). We then purified both whole cells and minicell populations of this strain based on density and assessed purity microscopically. The whole-cell fraction was 98.9% pure (one budding minicell observed per 94 bacteria), and whole cells were not observed in the minicell fraction (Fig. 2B).

Upon assessment of extracted membrane protein (Fig. 2C), we observed no discernible difference between whole cells and minicells in the abundance of O-antigen chain length modulators WzzB$_{SF}$ and WzzB$_{pHS2}$. As expected, minicell membranes were more abundant in IcsA than whole cells showing that minicells represent polar material of the IcsA pole. Additionally, we...
Figure 3. Removal of LPS O-antigen does not change IcsA surface distribution. IcsA expression levels and surface distributions were investigated in both single icsA copy and multi-icsA copy conditions. Panels (A–C) show data generated using wild-type S. flexneri 2457T, ΔicsA (RMA2041) and ΔmldD (ETRM230) strains, and panels (D–F) from strains ΔicsA and ΔicsA ΔmldD (RMA2043) complemented with either pIcsA or base vector pBR322 (Bolivar et al. 1977) (see Table 1). ‘S’ and ‘R’ denote smooth-LPS (with O-antigen) and rough-LPS (without O-antigen), respectively. Anti-IcsA Western immunoblots (A and D) show IcsA protein expression levels in total bacterial protein samples (n = 3). Chaperone DnaK served as a loading control. (B and E) Phase (top) and anti-IcsA IF micrographs (bottom) of representative bacteria. Fluorescence intensities for panels C and F are average pixel grey levels scaled equally relative to each strain. Each image is 4 μm by 4 μm. (C and F) IF experiments were repeated (n = 3–7) and IcsA surface detection (i) and surface distributions (ii) were measured for each IcsA expressing strain on a population basis. The quotients of the R-LPS and S-LPS IcsA distributions are also shown in (iii) with mean mid-cell indicated by the vertical line and red line indicating fitted linear functions (R² = 0.3974 and 0.8924 for C iii and F iii, respectively). OP = old pole, MNP = mean new pole, ns = not significant. Differences in mean surface detection for (i) were analyzed by two-tailed t-test, and differences in distribution between OP, MNP and mid-cell in (iii) analyzed by one-way ANOVA (** = P < 0.01, *** = P < 0.001, **** = P < 0.0001).

also observed no differences in the relative abundances of 5LPS and 10LPS between minicells and whole cells. This was true for purified populations from both log-phase and stationary-phase cultures (Fig. 2D). Therefore, these results do not support a model of enhancement of IcsA exposure at the pole due to an asymmetric distribution of LPS O-antigen chain lengths between the pole and lateral surfaces (Fig. 1B). Consequently, the previously observed changes in apparent IcsA distributions between S-LPS and R-LPS bacteria must be due to one or more of the effects of symmetrical masking, membrane fluidity and lateral diffusion, or other factors. It should also be noted here that, to our knowledge, this is the first observation of LPS O-antigen modal length distribution using minicells.

To thoroughly model IcsA distributions and the effects of LPS, we devised methods to quantitate the average IcsA surface population distribution for a given strain removing biases of qualitative assessment and artificial selection of bacteria (see the section ‘Materials and Methods’). We first investigated IcsA differences between the wild-type and R-LPS derivative strains (Fig. 3A–C). Our R-LPS strain is unable to make O-antigen due to the absence of RmlD which synthesizes dTDP-rhamnose (a precursor sugar for O-antigen synthesis, see Table 1). Unexpectedly, we observed a large increase in IcsA levels in the R-LPS strain relative to the wild type (Fig. 3A) which had not previously been reported. However, qualitative IcsA surface distributions replicated previous reports with the R-LPS strain displaying higher lateral and bipolar IcsA detection compared to wild type (Fig. 3B). We quantified these distributions (Fig. 3C) and found that IcsA surface detection was significantly more intense for the R-LPS strain (Fig. 3 Ciii; P = 0.0002), yet was still highly localized to the old pole (Fig. 3 Cii). Direct comparisons of S-LPS and R-LPS IcsA distributions (Fig. 3 Ciii) revealed that the R-LPS strain had significantly higher placement of IcsA at the new pole, whether assessed relative to the old pole or the mid-cell (P = 0.0053 and P < 0.0001,
respectively). There was no significant change in IcsA old pole localization relative the mid-cell between S-LPS and R-LPS strains.

These data support previous reports that R-LPS strains have an increased propensity for bipolarity and a reduction in polar refinement, yet it is difficult to assess whether this is due to the increase in overall IcsA expression or due to changes in membrane diffusion of IcsA. Therefore, we repeated this investigation using strains expressing IcsA from a plasmid (picaS; see Table 1). These conditions equalized IcsA levels between S-LPS and R-LPS strains as shown (Fig. 3D). Qualitatively, IcsA surface distributions on R-LPS bacteria again appeared more intense than S-LPS, but had similar overall distributions (Fig. 3E). This was recapitulated when quantitated (Fig. 3F, and F40), but unexpectedly, the quotient of these distributions (Fig. 3F40) did not show any significant shifts in IcsA localization for any point between the poles.

Contrary to the current literature, the results presented in Fig. 3 show that upon IcsA cellular levels being equal, IcsA surface distribution remains indistinguishable regardless of the presence of LPS O-antigen on the membrane. This supports the notion that the masking effect of LPS is exerted symmetrically over the surface of S. flexneri, and is further supported by our observations of equivalent O-antigen chain lengths between whole cells and minicells (indicating symmetrical chain length distributions for wild type) presented in Fig. 2. Furthermore, since LPS changes do not affect IcsA polarity, it also shows that R-LPS does not consequently increase the fluidity of IcsA molecules in the outer membrane (Fig. 1A). Lateral diffusion of IcsA from the pole is either unchanged or does not occur.

It is also interesting that IcsA levels are increased when O-antigen synthesis is blocked. Although previously utilized S. flexneri strains were deficient in O-antigen due to varied mutations (Sandlin et al. 1995; Sandlin, Goldberg and Maurelli 1996; Robbins et al. 2001), it is possible that previous attributions of LPS effecting IcsA polarity were due to overlooked changes in cellular IcsA concentration. The reason for this change in IcsA level is uncertain but it is plausible that degradates responsible for normal IcsA turnover are functionally altered in R-LPS strains resulting in higher steady-state levels. Indeed, we have previously shown that periplasmic protease DegP has altered activities with respect to IcsA maintenance in R-LPS S. flexneri (Teh, Tran and Morona 2012). Nevertheless, it is intriguing that increased IcsA levels increase the tendency for abnormal placement of IcsA at the new pole. It has been proffered that cytoplasmic accumulation at the pole seeds initial placement of IcsA (Charles et al. 2001; Rokney et al. 2009)—it is possible that changes in IcsA abundance can influence this accumulation and increase the tendency for off target accumulation. This notion is consistent with the increases of IcsA at the new pole observed in this work (Fig. 3C).

In summary, this study reveals that: (i) S. flexneri IcsA polarity, and any diffusion of IcsA in the outer membrane, is not affected by LPS O-antigen presence; (ii), IcsA is affected by symmetrical masking; (iii) O-antigen chain lengths are symmetrically distributed; and (iv) changes in O-antigen synthesis can deregulate IcsA levels effecting polarity.

ACKNOWLEDGEMENTS

MTD is the recipient of a Doctor of Philosophy scholarship from the University of Adelaide. We thank the Research Centre for Infectious Diseases (RCID) for support during this work. We also thank Elizabeth Ngoc Hoa Tran for critical reading of the manuscript.

FUNDING

This work was supported by the National Health and Medical Research Council (NHMRC) of Australia [Grant number 565526].

Conflict of interest. None declared.

REFERENCES

Morona R, Daniels C, Van Den Bosch L. Genetic modulation of Shigella flexneri 2a lipopolysaccharide O antigen modal chain length reveals that it has been optimized for virulence. Microbiology 2003c;149:925–39.

Morona R, Van Den Bosch L. Multicopy icsA is able to suppress the virulence defect caused by the wzz(SF) mutation in Shigella flexneri. FEMS Microbiol Lett 2003b;221:213–9.

Tran EN, Doyle MT, Morona R. LPS unmasking of Shigella flexneri reveals preferential localisation of tagged outer membrane protease IcsP to septa and new poles. PLoS one 2013;8:e70508.

Tran EN, Doyle MT, Morona R. LPS unmasking of Shigella flexneri reveals preferential localisation of tagged outer membrane protease IcsP to septa and new poles. PLoS one 2013;8:e70508.

