RESEARCH ARTICLE

Galactose utilization sheds new light on sugar metabolism in the sequenced strain Dekkera bruxellensis CBS 2499

Md Moktaduzzaman\(^1\), Silvia Galafassi\(^1\), Claudia Capusoni\(^1\), Ileana Vigentini\(^1\), Zhihao Ling\(^2\), Jure Piškur\(^2\) and Concetta Compagno\(^1\),\(^∗\)

\(^1\)Department of Food, Environmental and Nutritional Sciences, University of Milan, Via G. Celoria 2, 20133, Italy and \(^2\)Department of Biology, Lund University, Box 117, 221 00 Lund, Sweden

\(*\) Corresponding author: Department of Food, Environmental and Nutritional Sciences, University of Milan, Via G. Celoria 2, 20133 Milan, Italy. Tel: +390250319248; Tel: 390250319248; E-mail: concetta.compagno@unimi.it

One sentence summary: We show here that in D. bruxellensis CBS 2499 galactose is not a fermentable carbon source and its metabolism is affected by the nitrogen source.

Editor: Jens Nielsen

ABSTRACT

Dekkera bruxellensis and Saccharomyces cerevisiae are considered two phylogenetically distant relatives, but they share several industrial relevant traits such as the ability to produce ethanol under aerobic conditions (Crabtree effect), high tolerance towards ethanol and acids, and ability to grow without oxygen. Beside a huge adaptability, D. bruxellensis exhibits a broader spectrum in utilization of carbon and nitrogen sources in comparison to S. cerevisiae. With the aim to better characterize its carbon source metabolism and regulation, the usage of galactose and the role that glucose plays on sugar metabolism were investigated in D. bruxellensis CBS 2499. The results indicate that in this yeast galactose is a non-fermentable carbon source, in contrast to S. cerevisiae that can ferment it. In particular, its metabolism is affected by the nitrogen source. Interestingly, D. bruxellensis CBS 2499 exhibits the ‘short-term Crabtree effect’, and the expression of genes involved in galactose utilization and in respiratory metabolism is repressed by glucose, similarly to what occurs in S. cerevisiae.

Key words: carbon metabolism; nitrogen metabolism; glucose repression; acetic acid production; ethanol production

INTRODUCTION

Sugar metabolism provides an essential source of energy and metabolites for most organisms. To develop industrial strategies and processes based on cell as a factory, the understanding of the metabolic pathways and their regulation is mandatory. Although glucose is the preferred sugar by microorganisms and the most abundant component of natural polysaccharides, the use of other sugars is becoming more and more attractive at industrial level to obtain cost efficient bioprocesses and to avoid interfering with the use of food crops for the production of chemicals. Nowadays, research efforts are in fact focused both to obtain monosaccharides from alternative sources than food and to develop microorganisms able to use all of them, hexoses and pentoses as well. In this regard, Saccharomyces cerevisiae, which is one of the most frequently used cell factory in industrial biotechnology, prefers glucose as carbon and energy source and is unable to use pentoses. In recent years, yeast strains capable of overcoming this limitation have been developed by metabolic modifications (Van Vleet and Jeffries 2009). Together with glucose, galactose is a component of hemicellulose and it is the major sugar in the red seaweed biomass, representing an attractive industrial carbon source (Packer 2009). Its utilization has been extensively studied in S. cerevisiae where it occurs through...
Stocks of the strain were stored at −80 °C in 15% v/v glycerol.

Media and growth conditions

Shake flask cultures in the synthetic medium reported in Merico et al., 2007 incubated at 30 °C in a rotary shaker at 200 rpm were used to test the growth with specific carbon sources (glucose 20 g L\(^{-1}\) or galactose 20 g L\(^{-1}\) or ethanol 2% v/v). Aerobic batch cultivations were performed in a Biostat-Q system bioreactor (B-Braun) with a working volume of 0.8 L. The temperature was set at 30 °C, the stirring speed at 500 rpm and the pH, measured by a Mettler Toledo pH electrode, was adjusted to 5.0 by automatic addition of 5M KOH. The fermenters were continuously sparged with air, 1 L min\(^{-1}\), and the dissolved oxygen concentration (always higher than 30% of air saturation) was measured by a Mettler Toledo polarographic oxygen probe. For batch cultivations, the synthetic medium was that reported above. Carbon sources were, as specified, glucose 20 g L\(^{-1}\), galactose 20 g L\(^{-1}\) or ethanol 2% v/v. Nitrogen sources were ammonium sulfate 5 g L\(^{-1}\) or sodium nitrate 6.43 g L\(^{-1}\), as specified. All the experiments were performed in duplicate. The growth was monitored by OD\(_{600nm}\) measurement.

Glucose ‘pulse’ experiments

Glucose ‘pulse’ experiments were performed in duplicate using batch cultures of cells growing on synthetic medium reported in Merico et al. (2007), containing 5 g L\(^{-1}\) ammonium sulfate as nitrogen source. To obtain a population of cells growing in exponential phase, with a respiratory galactose metabolism and in the presence of a lower concentration of residual galactose at the moment of the glucose addition, a concentration of 5 g L\(^{-1}\) galactose (instead of 20 g L\(^{-1}\)) was used for the pulse trials. When cells reached the exponential growth phase (approx. 6 OD\(_{600nm}\)), glucose was added to give a final concentration of 10 g L\(^{-1}\).

Dry weight and metabolites assays

Samples collected at several points during the cultivation were submitted to the dry weight determination after the removal of the medium by filtration (0.45 μm glass microfiber GF/A filter; Whatman). The filters were washed with 3 volumes of de-ionized water and dried overnight at 105 °C. Supernatants were used for glucose, acetic acid, ethanol and nitrate quantification using commercial enzymatic kits (Roche, cat. numb. 1 0716251 035, 1 0148261 035, 1 0176290 035 and 1 0905658 035). All the assays were performed in triplicate.

Enzymatic assays

Cell extracts for enzymatic assays were obtained by extraction with acid-washed glass beads (SIGMA) as described previously (Postma et al., 1989), and total protein concentrations were determined by Bio-Rad kit no. 500–002 (Bio-Rad, Hercules, CA, USA) using bovine serum albumin as standard. The specific activities of pyruvate decarboxylase (PDC), acetaldehyde dehydrogenase (ACDH) and alcohol dehydrogenase (ADH) in cells extract were determined at room temperature in a spectrophotometer at 340 nm as previously described (Postma et al., 1989).

RNA extraction and cDNA synthesis

Pellets for RNA extraction were collected when cultures reached the exponential phase, which ensured that the gene expression analyses were performed from cells in the same physiological
state. Harvested cells were centrifuged and pellets were immediately frozen with liquid nitrogen prior to store them at −80 °C until RNA extraction. RNA extraction was performed according to Presto™ Mini RNA Yeast Kit manufacturer’s protocol with few changes. Pellets were disrupted with acid-washed glass beads (500 μL RB Buffer, 5 μL β-mercaptoethanol and equal volume of glass beads) in a mini-bead beater (Precellys™ 24 homogenizer) instead of using zymolyase enzymatic breakdown. The setting chosen for cell disruption was a run of three repetitions lasting 30 s at high speed. The RNA was quantified by means of a spectrophotometric method, and its integrity was evaluated by running an electrophoresis agarose gel in denaturing conditions. RNA was stored at −80 °C until cDNA synthesis. The cDNA was synthesized with QuantiTect® Reverse Transcription Kit (Qiagen) following the manufacturer’s instructions. An amount of 1 μg total RNA was used for each reverse transcription reaction. Synthesized cDNA was stored at −20 °C until RT-qPCR assays.

Primers design

The sequences of target genes were obtained from the D. bruxellensis CBS 2499 database (DOE Joint Genome institute database; http://genome.jgi-psf.org/Dekbr2/Dekbr2.home.html) after BLASTx analysis using the corresponding potential orthologous sequences in S. cerevisiae genome retrieved from the SGD database (http://www.yeastgenome.org/), except for AOX1 orthologous sequence that was obtained from the Candida genome database (http://www.candidagenome.org/). A list of the primers is reported in Table S1 (Supporting information).

RT-qPCR analysis

RT-qPCR analyses were performed using SsoFast™ EvaGreen® Supermix (BIO-RAD). 96-well plates were used in a Bio-Rad C1000™ Thermal Cycler machine, and each amplification reaction was composed of 7.5 μL of EvaGreen master mix, 1 μL of each primer (333 nmol L−1, final), 2 μL of cDNA (five times diluted cDNA synthesized from RNA) and 3.5 μL of MQ water. Cycling parameters were 98 °C for 30 s as hot start, followed by 39 cycles of 95 °C for 3 s and 60 °C for 5 s, and melting curve was included at end of each run. Negative PCR control (for unspecific amplification) and negative RT control (for genomic DNA contamination) were run in parallel as internal control. Standard curves were created for each couple of primers by plotting CT (threshold cycle) values of the real-time PCR performed on dilution series of cDNA. From the standard curve, the amplification efficiency (E) was estimated by Bio-Rad CFX Manager software (BIO-RAD). The reaction specificity was evaluated by analyzing the melting curve profile. The α-tubulin gene was used as endogenous reference, previously used (Rozpedowska et al., 2011), and cDNA samples from cells grown on glucose or ethanol were considered as the reference condition. For each growth condition, a total of three independent cDNA samples were prepared from two biological replicates. Each cDNA sample was run in technical triplicates during RT-qPCR assays. Statistically significant differences of each gene expression among three growth conditions were analyzed by ANOVA test. The level of statistical significance was set at P ≤ 0.05.

Promoter motif presence

The 1000 nt sequence upstream the translation start site of each gene was considered as the promoter sequence of the gene. A homemade python script was used to search the motif sequences present in the promoters.

Phylogenetic analysis

Protein sequences of homologous genes among different species were aligned by MUSCLE Version 3.8.31. Trimal was used to trim the sequence alignment with the following parameter: -cons 50 -gt 0.5. PhyML was used to build the phylogenetic tree of each group of genes.

RESULTS

Galactose metabolism is affected by nitrogen source

Preliminary cultivation on shake flasks indicated the ability of several D. bruxellensis strains to grow on galactose-based media (data not shown). In the aim to study galactose metabolism under controlled aerobic condition, we decided to perform batch cultures in fermenter at controlled concentration of dissolved oxygen. The strain used for these experiments was D. bruxellensis CBS 2499, recently sequenced (Piškur et al., 2012). When D. bruxellensis was cultivated on media containing ammonium salts as nitrogen source, galactose metabolism was respiratory, as indicated by the high biomass level and by the failed production of metabolites normally resulting from fermentative metabolism, such as ethanol or acetic acid (Fig. 1A, Table 1). The growth rate on galactose was lower than on glucose, as well as its specific consumption rate (Table 1). On the other hand, the biomass yield on galactose was higher, as expected being this sugar utilized through a respiratory metabolism, in comparison with glucose that, on the contrary, was metabolized through the fermentative pathway (Table 1).

Dekkera bruxellensis is able to use nitrate as nitrogen source (Galafassi et al., 2013). This prompted us to test if the galactose metabolism can be affected by the nitrogen source. Interestingly, when the medium contained nitrate as nitrogen source, the final products of galactose metabolism changed: together with biomass also acetic acid and a very low amount of ethanol were produced (Fig. 1B, Table 1). As a consequence, a lower biomass yield was obtained in comparison with ammonium-based media (Table 1). The rate at which galactose was consumed on nitrate-based media was higher than that on ammonium-based media (Table 1), nevertheless the growth rates were very similar in both conditions. Notably, acetic acid and ethanol were produced on galactose at lower rates and yields than on glucose. In conclusion, these results indicated that when the cells use ammonium as nitrogen source the galactose metabolism is respiratory. Nevertheless, when nitrate is utilized as nitrogen source, a partial redirection of pyruvate occurred: part of pyruvate was in fact diverted from its entry into the TCA cycle and converted, by pyruvate decarboxylase, to acetaldehyde, which in turn was converted to acetic acid and, at a low level, also to ethanol.

Gene expression and enzyme activities for galactose and respiratory metabolism

The availability of the complete genome sequence of the *D. bruxellensis* CBS 2499 strain (Piškur et al., 2012) allowed the identification of genes encoding all the enzymes that in *S. cerevisiae* are required for galactose assimilation (Table 2). Interestingly, *DbGAL7*, *DbGAL10* and *DbGAL1* are clustered, as reported in other *Ascomycota* (Marchenko et al., 2007). A phylogenetic tree obtained using sequences identified by similarity with *S. cerevisiae* HXT and *Candida albicans* HGT protein (Fig. 2) showed that the majority of *D. bruxellensis* putative sugar transporters map within the *C. albicans* group, but four of them are in the group containing also
S. cerevisiae HXT. Two sequences, HXTA and HXTD, showed a high similarity to ScGal2p (53–56%). In S. cerevisiae, galactose is sensed in the cytoplasm via Gal3p (Johnston 1987), but no GAL3 orthologue was found in D. bruxellensis CBS 2499 genome, as reported also in C. albicans (Martchenko et al., 2007). On the other hand, in the analyzed genome, a gene encoding a putative protein which showed a 54% identity with CaHgt4p (Table S2, Supporting Information) was found; this gene has been demonstrated to sense both glucose and galactose in C. albicans (Brown, Sabina and Johnston 2009).

The expression of genes involved in galactose and respiratory metabolism was analyzed, in order to understand the role that the carbon source plays on their transcriptional regulation. In S. cerevisiae, these genes are repressed by glucose (Johnston 1999; Schüller 2003; Daran-Lapujade et al., 2004). The same pattern of regulation seems to work in D. bruxellensis CBS 2499 as well. Results from genes encoding putative sugar transporters showed that the expression of HXTA and HXTD was galactose-induced (Fig. 3A). Also the expression of DbGAL1, DbGAL7 and DbGAL10 was strongly induced by galactose (Fig. 3B). The latter genes were expressed even on ethanol and, by comparison, repressed by glucose (Fig. S1, Supporting Information). The transcriptional analysis of genes for respiratory metabolism, such as those encoding TCA enzymes, cytochrome components, glyoxylate cycle and gluconeogenesis enzymes, showed that also in this yeast glucose can repress these pathways (Fig. 3C–F). In the genome of D. bruxellensis CBS 2499, we identified a sequence with a high similarity to C. albicans AOX1, which encode an oxidase involved in mechanisms of alternative respiration (Huh and Kang 1999). Interestingly, in the strain under study the expression of this gene was lower on galactose than on glucose (Fig. 3C), despite the respiratory metabolism exhibited on the former sugar.

In order to understand if the respiratory galactose metabolism on ammonium-based media was due to a lack of enzymes involved in the fermentative pathway, the activity of PDC, acetaldehyde dehydrogenase (ACDH) and ADH was tested. We found that PDC activity was lower on galactose than on glucose (0.25 and 0.48 U mg$^{-1}$, respectively). The activity of ACDH was higher on galactose than on glucose (1.2 and 0.51 U mg$^{-1}$, respectively), on the contrary ADH exhibited the same activity on both the carbon sources (2.9 U mg$^{-1}$).
Table 1. Growth parameters of cultivations on galactose-based media containing ammonium sulfate and sodium nitrate as nitrogen source. For comparison, the growth parameters calculated during cultivations on glucose-based media are indicated in brackets.

<table>
<thead>
<tr>
<th>Galactose (Glucose)</th>
<th>Ethanol</th>
<th>Acetate</th>
<th>Nitrate</th>
<th>Biomass</th>
<th>Ethanol</th>
<th>Acetate</th>
<th>μ [h⁻¹]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammonium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.82–0.86*</td>
<td>n.d.</td>
<td>n.d.</td>
<td>–</td>
<td>0.497–0.501*</td>
<td>n.d.</td>
<td>n.d.</td>
<td>0.0752–0.0755*</td>
</tr>
<tr>
<td>(3.6–3.7)ᵃ</td>
<td>(3.9–4.4)ᵃ</td>
<td>(0.62–0.070)ᵃ</td>
<td>(–)ᵃ</td>
<td>(0.17–0.18)ᵇ</td>
<td>(0.320–0.335)ᵇ</td>
<td>(0.058–0.060)ᵇ</td>
<td>(0.11–0.12)ᵇ</td>
</tr>
<tr>
<td>Nitrate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.20–1.3*</td>
<td>0.011–0.011*³</td>
<td>0.491–0.496*³</td>
<td>0.466*³</td>
<td>0.374–0.379*³</td>
<td>0.002*³</td>
<td>0.068–0.072*³</td>
<td>0.0714–0.073*³</td>
</tr>
<tr>
<td>(2.94 ± 0.006)ᵇ</td>
<td>(1.650 ± 0.007)ᵇ</td>
<td>(1.83 ± 0.009)ᵇ</td>
<td>(–)ᵇ</td>
<td>(0.19 ± 0.004)ᵇ</td>
<td>(0.133 ± 0.006)ᵇ</td>
<td>(0.216 ± 0.006)ᵇ</td>
<td>(0.92 ± 0.006)ᵇ</td>
</tr>
</tbody>
</table>

* experiments performed in duplicate (the range of values reported).
ᵃ Data from Rozpedowska et al. (2011).
ᵇ Data from Galafassi et al. (2013).
q: specific consumption/production rate.
DW: dry weight.
n.d.: not detectable.

Table 2. Genes involved in galactose metabolism. For each protein analyzed, the function (Rubio-Texeira 2005), the ID number (in http://genome.jgi-psf.org/Dekbr2/Dekbr2.home.html database), the identity with the related protein in S. cerevisiae (http://www.ncbi.nlm.nih.gov/) and the presence or absence of regulative motifs in promoter sequences of D. bruxellensis are indicated. Mismatches with the reference motif are underlined.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Function</th>
<th>ID number in D. bruxellensis</th>
<th>Identity (%)</th>
<th>MGI (C/G)(C/T)GG(G/A)G</th>
<th>CPH1 TGTACGGTT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ScGAL1</td>
<td>Galactokinase/Bifunctional sensor inducer</td>
<td>jgi</td>
<td>Dekbr2</td>
<td>28686</td>
<td>61%</td>
</tr>
<tr>
<td>ScGAL2</td>
<td>Galactose permease</td>
<td>jgi</td>
<td>Dekbr2</td>
<td>26692</td>
<td>56–57%</td>
</tr>
<tr>
<td>ScGAL3</td>
<td>Galactose Sensor</td>
<td>no hit found</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>ScGAL4</td>
<td>Transcriptional activator</td>
<td>no hit found</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>ScGAL7</td>
<td>Galactose-1-phosphate uridylyltransferase</td>
<td>jgi</td>
<td>Dekbr2</td>
<td>26690</td>
<td>66%</td>
</tr>
<tr>
<td>ScGAL10</td>
<td>Uridine diphosphoglucose 4-epimerase</td>
<td>jgi</td>
<td>Dekbr2</td>
<td>26691</td>
<td>63%</td>
</tr>
<tr>
<td>ScGAL80</td>
<td>Gal4p repressor</td>
<td>no hit found</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>
Figure 2. A phylogenetic tree of the S. cerevisiae HXTp and the HGTp homologs of C. albicans and D. bruxellensis. The HXT homologs in D. bruxellensis are indicated by red box. Note that some C. albicans transporters map within the HXT group and that a majority of D. bruxellensis transporters map within the C. albicans HGT group.

Glucose addition triggers the ‘short-term Crabtree effect’

The observation that D. bruxellensis CBS 2499 metabolizes galactose by a respiratory way prompted us to study the presence of the so called ‘short-term Crabtree effect’, the immediate production of ethanol upon the addition of glucose to a culture growing through a respiratory metabolism. This phenomenon has been reported to occur in S. cerevisiae, but in some other Crabtree-positive yeasts the production of ethanol is delayed (Pronk, Yde Steensma and Van Dijken, 1996; Møller et al., 2002; Hagman et al., 2013). To analyze this effect, cells growing in exponential phase on galactose were ‘pulsed’ with glucose, and samples were collected in order to detect if the addition of glucose can trigger aerobic fermentation. Ethanol production was detected just after 15 minutes from the glucose addition, and it continued to be produced all along the glucose consumption phase (Fig. 4). Interestingly, galactose continued to be slowly consumed for at least four hours, and then stopped (Fig. 4). Sugars utilization resulted also in biomass formation (Fig. 4). Acetic acid production started, but delayed in respect to ethanol (Fig. 4). The calculated parameters like specific consumption/production rates and yields gave interesting information about the dynamic of glucose utilization during the pulse. Glucose consumption rate was in fact high in the first 30 minutes from the pulse (3.5 mmol g⁻¹ h⁻¹), and then decreased, resulting in a value of 2 mmol g⁻¹ h⁻¹. This means that glucose was consumed at a higher rate than galactose, as observed also in the batch cultures performed on the single sugar (see Table 1). During the glucose pulse, the ethanol production rate and yield increased, from 0.3 mmol g⁻¹ h⁻¹ in the first 30 minutes to 0.8 mmol g⁻¹ h⁻¹ after five hours and from 0.013 to 0.12, respectively, indicating that the fermentative pathway could start early (after 15 minutes), but other factors were required to reach a higher fermentative capacity.

DISCUSSION

Recent studies have highlighted that D. bruxellensis shares with S. cerevisiae the ability to survive in challenging environments such as the industrial bioethanol production processes. Besides the adaptability to conditions of low pH and high ethanol concentration, D. bruxellensis exhibits a broader spectrum of consumable carbon and nitrogen sources in comparison to S. cerevisiae, having cellobiose and lactose as well as nitrate-assimilating capacity (Contorno et al., 2006; Galafassi et al., 2013), and this can contribute also to its ecological distribution. Here, we showed that in D. bruxellensis CBS 2499 galactose is a non-fermentable carbon source (Table 1). This is in contrast to what occurs in S. cerevisiae, which produces ethanol even from galactose (Sierkstra et al., 1993; Ostergaard et al., 2000; Martinez et al., 2014). Another interesting aspect of the galactose metabolism in D. bruxellensis CBS 2499 is that it affects by the nature of the nitrogen source. When the cells used nitrate as nitrogen source, galactose was metabolized leading to the production of biomass and acetic acid. The enzymes involved in nitrate assimilation, nitrate and nitrite reductases, in D. bruxellensis have been shown to use, in vitro, NADH and NADPH as electron donors (Galafassi et al., 2013), and an increased production of acetic acid has been observed to occur on glucose-based media when nitrate is the sole nitrogen source (Galafassi et al., 2013). This means that acetic acid synthesis can generate the NADPH necessary for nitrate assimilation, on glucose as well as on galactose. The presence of nitrate induced an increase in the galactose consumption rate (Table 1), that could be due
Figure 3. Expression levels of *D. bruxellensis* CBS 2499 genes involved in different metabolic pathways. The transcription level on each carbon source is relative to its expression level on glucose. (A) genes involved in hexoses (glucose and galactose) transport; (B) genes involved in galactose metabolism; (C) genes involved in respiratory pathway; (D) TCA genes; (E) genes involved in glyoxylate cycle; (F) gene involved in gluconeogenesis. Errors bars are the standard deviation of three replicates. The level of statistical significance was set at *P* ≤ 0.05.

Figure 4. Kinetic of a glucose ‘pulse’ to a galactose-based culture (one experiment is showed). Time starts after glucose addition. Symbols: *, glucose; filled squares, galactose; filled rhombus, biomass; filled circles, acetate and filled triangles, ethanol. In the box, the kinetic of growth on galactose that preceded the glucose ‘pulse’ is showed.

to the higher energetic cost for the utilization of this nitrogen source compared to the ammonium sulfate (Siverio 2002). We can suppose that the increased galactose consumption rate triggers the redirection of part of the pyruvate towards acetaldehyde and then to acetic acid and ethanol (this last produced in a very low amount). In *S. cerevisiae*, it has been demonstrated that by increasing the galactose consumption rate the ethanol production rate increases (Ostergaard et al., 2000).

The scenario that comes out from these new observations is that when the strain of *D. bruxellensis* under study is
cultivated on galactose-based media it behaves like a Crabtree-negative yeast, not producing ethanol, in contrast to *S. cerevisiae*, that behaves like a Crabtree-positive yeast both on glucose and on galactose. This could be related to the galactose consumption rate: in *D. bruxellensis*, we observed in fact that galactose was consumed at a slower rate than glucose (Table 1). We think that this factor could result in an insufficient pyruvate overflow, which is necessary to trigger aerobic ethanol production, as occurs in *S. cerevisiae* (Ostergaard et al., 2000). The ability to produce ethanol aerobically can therefore start when the glycolytic flow increases. The addition of glucose to a galactose-based culture caused a faster sugar consumption (glucose consumption rate 3.5 mmol g\(^{-1}\) h\(^{-1}\) versus galactose consumption rate 0.84 mmol g\(^{-1}\) h\(^{-1}\)) and a quick production of ethanol (Fig. 4), causing a shift in the metabolism from respiratory towards aerobic fermentative, the so-called ‘short-term Crabtree effect’. The occurrence of the Crabtree effect has been already demonstrated in *D. bruxellensis* in batch cultures (van Dijken and Scheffers 1986; Rozpedowska et al., 2011), as well as by glucose pulse to glucose-limited continuous cultures growing at low rate with a respiratory metabolism (Leite et al., 2013). In this study, we show that the ‘short-term Crabtree effect’ resulted from a high glycolytic flow occurring when the cells use glucose, which can in turn trigger a pyruvate overflow. This is known to be one of the main causes that can activate the ‘short-term Crabtree effect’ in *S. cerevisiae* (Postma et al., 1989; Daran-Lapujade et al., 2004; Huberts, Niel and Heinemann, 2012).

Glucose repression is the regulatory mechanism that has been shown to cause the ‘long-term Crabtree effect’ in *S. cerevisiae* (Pront et al., 1996). The transcription of genes essential for respiratory metabolism and mitochondrial functions, as well as for the utilization of other carbon sources, is repressed when *S. cerevisiae* is cultivated on rapidly fermentable sugars like glucose, fructose and mannose (Verstrepen et al., 2004). In particular, we focused our attention on the expression of genes containing in their promoters putative consensus sequences related to the transcription factor Mig1p (Table S3, Supporting Information), which is known to be one of the key elements in glucose repression in *S. cerevisiae* (Klein, Olsson and Nielsen, 1998; Luftiyya et al., 1998; Westholm et al., 2008). In the genome of *D. bruxellensis* CBS 2499, two sequences that show 39–49% similarity with *S. cerevisiae* MIG1 (notice that in *S. cerevisiae* genome the presence of three genes, MIG1, MIG2 and MIG3, has been reported; Westholm et al., 2008) were identified. In *C. albicans*, CaMig1p has been shown to play a role in the regulation of carbon source utilization and energy production (Murad et al., 2001). Our results indicated that genes involved in galactose utilization, TCA, cytochromes structure, glyoxylate cycle and gluconeogenesis are repressed by glucose (Fig. 3). On the other hand, a sequence encoding a protein with a 44% identity to CaChp1p, which in *C. albicans* acts as a transcriptional factor required for the regulation of galactose metabolism (Marchenko et al., 2007; Brown et al., 2009), was present also in *D. bruxellensis* CBS 2499 genome (Table S2, Supporting Information). Moreover, putative regulatory motifs recognized by this transcriptional factor were found in all the promoters of the galactose-related genes in the analyzed strain. (Table S2, Supporting Information). Although the structural genes for galactose metabolism in *D. bruxellensis* CBS 2499 seems well conserved by evolution, the regulatory components appear to be also related to other species like *C. albicans* (Ihmels et al., 2005). The molecular mechanisms operating in *D. bruxellensis* are still far to be elucidated, and it will be interesting in next future to demonstrate the specific role of different transcriptional factors.

In conclusion, the present work demonstrates that several metabolic implications are linked to the galactose metabolism in *D. bruxellensis*. Contrarily to *S. cerevisiae*, galactose is respired by cells, but the kind of nitrogen source can change the pattern of final products. This work also suggests, by proving the ‘short-term Crabtree effect’ in *D. bruxellensis*, that this species behaves like *S. cerevisiae*, since to obtain aerobic ethanol production from sugars a high glycolytic flow needs to be reached.

SUPPLEMENTARY DATA

Supplementary data is available at FEMSYR online.

FUNDING

Md Moktaduzzaman has a fellowship from Marie-Curie FP7-PEOPLE-2010-ITN ‘CORNUCOPIA’ project.

Conflict of interest statement. None declared.

REFERENCES

Westholm JO, Nordberg N, Murén E, et al. Combinatorial control of gene expression by the three yeast repressors Mig1, Mig2 and Mig3. BMC Genomics 2008;9:601.