

Figure S1 Distributions of hematological traits in pre-CC mice and founder lines for which no QTL were detected.

Figure S2 MCV values among C57BL/6J ($\mathrm{Hbb} / \mathrm{s} / \mathrm{s}$ genotype), 129S1/SvlmJ ($\mathrm{Hbb} \mathrm{d} / \mathrm{d}$ genotype), and F1 mice (s / d genotype). F1 mice from 129S1/SvImJ dams are depicted as white triangles and F1 mice from C57BL/6J dams are depicted as black circles. F1 mice from $129 \mathrm{~S} 1 /$ SvImJ dams had larger MCV than F1 mice from the reciprocal cross ($55.6 \pm 0.4 \mathrm{vs} 53.4 \pm 0.4 \mathrm{fL}, p=0.002$).

Figure S3 Hbb gene expression and MCV in pre-CC mice. Total $H b b-\beta$ (left) and $H b b-b 1$ (right) gene expression were measured by qRT-PCR using spleen RNA from 30 pre-CC mice. Parameters for regression lines are shown in Table S9.

Tables S1-S3 are available for download at http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.111.001776/-/DC1.

Table S4 RBC and WBC Parameters in Collaborative Cross Founder Strain and pre-CC Mice

[^0]Table S5 SNPs in the Hemoglobin β Locus that Distinguish Single vs. Diffuse Strains

Hbb-b1 Strain	Amino Acid Position										
	9	13	16	20	58	76	77	80	109	139	Phenotype*
C57BL/6J	A	G	G	A	A	N	H	S	M	A	Single
NOD/ShiLtJ	-	-	-	-	-	-	-	-	-	-	Single
NZO/HiLtJ	-	-	-	-	-	-	-	-	-	-	Single
129S1/SvlmJ	S	C	A	P	-	-	-	-	-	T	Diffuse
A/J	S	C	A	P	-	-	-	-	v	T	Diffuse
WSB/EiJ	S	C	A	S	P	-	-	-	V	T	Diffuse
PWK/PhJ	S	C	A	P	-	K	N	-	V	T	Diffuse
CAST/EiJ	S	C	-	-	-	K	N	N	V	T	Diffuse
Hbb-b2	Amino Acid Position										
Strain	9	13	16	20	58	76	77	80	109	139	Phenotype*
C57BL/6J	-	-	-	-	-	-	-	-	-	-	Single
NOD/ShiltJ	-	-	-	-	-	-	-	-	-	-	Single
NZO/HiLtJ	-	-	-	-	-	-	-	-	-	-	Single
129S1/SvlmJ	-	C	-	S	-	-	-	-	-	T	Diffuse
A/J	-	C	-	S	-	-	-	-	-	T	Diffuse
WSB/EiJ	-	C	-	S	-	-	-	-	-	T	Diffuse
PWK/PhJ	-	C	-	S	-	-	-	-	-	T	Diffuse
CAST/EiJ	-	C	-	-	-	-	-	-	-	T	Diffuse

* Phenotype refers to the band pattern of hemoglobin β protein on isoelectric focusing experiments. Data from literature and databases was compiled to assemble this table.

Table S6 MCV (fL) Among Pre-CC mice and Founder Strains as a Function of Hbb-b1/b2 Single versus Diffuse Genotypes

			Founder Mice*	p-value
Founder Allele	n	Pre-CC	Mis	
C57BL/6J (s/s)	15	46.95	45.97	0.60
NOD/ShiLtJ (s/s)	10	47.23	55.90	$\mathbf{2 . 0 \times 1 0 ^ { - 5 }}$
NZO/HILtJ (s/s)	9	47.71	44.52	0.28
A/J (d/d)	12	58.68	48.62	8.0×10^{-4}
129S1/SvImJ (d/d)	7	58.30	62.42	0.15
CAST/EiJ (d/d)	9	56.82	46.32	$\mathbf{1 . 7 \times 1 0 ^ { - 4 }}$
PWK/PhJ (d/d)	9	61.53	60.84	0.58
WSB/EiJ (d/d)	14	60.77	57.84	0.05
Genotype Averages				
s/s	40	48.15	55.93	
d/d	69	59.45	50.46	

* Data for founder mice is from Table S1.

QTL	Chr	Start	End	Range	Number of SNPs	Strains with region of shared ancestry	MismatchedSNPs		Shared SNPs		Uniquely Shared SNPs	
							n	\%	n	\%	n	\%
Mcvq4	7	110959072	111086522	127450	3499	C57BL/6J						
						NOD/HiLtJ	27	0.8	3472	99.2	1455	41.6
						NZO/ShiLtJ						
Mcva5	14	20453181	22963216	2510035	35931	129S1/SvImJ NOD/HiLtJ	457	1.3	35,474	98.7	619	1.7
Moq1	1	92803891	92970550	166659	3357	A/J	76	23	3281	97.7	9	
							76	2.3	3281	97.7	9	

Table S8
Table S8 is available for download as a text file at http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.111.001776/-/DC1.

Table S9 Regression Models of MCV as a Function of Hbb s/d Genotype and Hbb Gene Expression*

1. Hbb gene expression		
Term	Beta	p-value
Hbb expression	-0.02	0.99
Intercept	55.02	<0.001

2. Hbb gene expression and s/d genotype		
Predictor	Beta	p-value
Hbb expression	1.00	0.26
Genotype	6.26	<0.001
Intercept	41.88	<0.001

3. Hbb gene expression, s/d genotype, and
genotype*expression

Predictor	Beta	p-value
Hbb expression	1.62	0.28
Genotype	8.89	0.10
Genotype*Expression	-0.51	0.61
Intercept	38.56	<0.001

4. Hbb-b1 gene expression		
Term	Beta	p-value
Hbb-b1 expression	0.00	1.00
Intercept	54.91	<0.001

5. Hbb-b1 and s/d
genotype

	Beta	p-value
Gene Expression	1.20	0.08
Genotype	6.57	<0.001
Intercept	44.87	<0.001
6. Hbb-b1 gene expression, s/d genotype, and		
genotype*expression		
Hbb-b1 expression	1.79	0.16
Genotype	7.31	<0.001
Genotype*Expression	-0.43	0.58
Intercept	43.69	<0.001

[^1]
[^0]: Values are reported as mean (standard error).
 ${ }^{1}$ data were log-transformed for statistical analysis and mapping.
 ${ }^{2}$ ANOVA conducted using only founder strains.
 ${ }^{3} r_{1}$, the interclass correlation, and g^{2}, coefficient of genetic determination, were calculated using founder strains only, as described in (Xing et al., 2009).

[^1]: * Note that Hbb gene expression (total or Hbb-b1) is expressed as the $\Delta \mathrm{Ct}$ (relative to Rps29) - $\Delta \mathrm{Ct}$ as in Figure S3.

