

C

Mean LGR; Mad1-4A-GBP (Mad1 \& GBP controls)

GFP strains ordered by log growth ratio

D	GBP	Mad1	Mad1 -GBP	mad1- RLK/AAA -GBP	mad1- RIL/AAA -GBP	mad1- A736T -GBP
	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots
Cep3	\cdots	\ldots	- .
-GFP	\cdots	\cdots	\cdots	\cdots	\cdots

Figure S4 Mad1 kinetochore SPIs.

(A) Serial dilutions of mad14 strain shows that cells with plasmids containing MAD1 or MAD1GBP rescue benomyl sensitivity of mad1 Δ, but not plasmids containing GBP, mad1-RLK/AAAGBP, mad1-RIL/AAA-GBP or mad1-A736T-GBP.
(B-C) A set of 88 kinetochore and kinetochore-associated GFP-tagged proteins (Table S1) were tested with Mad1-GBP. Mad1-GBP is compared with mad1-RLK/AAA-GBP (B) or mad1-RIL/AAAGBP (C).
(D) The growth effects of the Cep3-Mad1 SPI (and controls) are shown.
(E-F) The same 88 GFP strains were screened with a variant of Mad1-GBP with a shorter linker (four amino acids instead of the normal eight), Mad1-4A-GBP, and compared with GBP and Mad1 controls and produce similar results as for the longer linker (Figure 3A) (squared correlation coefficient, $\mathrm{R}^{2}=0.91$).
(G) The same GFP strains were screened with a version of Mad1-GBP with the shorter linker, Mad1-4A-GBP and compared with mad1-A736T-4A -GBP control. (H) The MAD3 gene was deleted from 22 GFP-tagged kinetochore strains and the WT and mad 3Δ strains were retested for their sensitivity to Mad1-4A-GBP (mad1-A736-4A-GBP used as control). The dashed line indicates a mean LGR of 0.4 and the control strains are untagged BY4741. All data for these Mad1 screens are listed in File S3.

