
Supplement684

OOA demography685

In Figure 2 and 3, changes in the frequency spectrum were examined starting from equilib-686

rium, the parameters for bottleneck sizes and growth rates in these examples were chosen687

to match those in the OOA demography from Tennessen et al. (2012) which contains a688

bottleneck period (between events b and c) and a bottleneck+growth period (between events689

c and d). We next ask how well these two periods, which we examined in isolation in Fig-690

ures 2 and 3, describe phases of heterozygosity change in the full OOA demography. The691

full demography also contains other di�erences; the population size doubles before the split,692

and the OOA bottleneck lasts only about 1,000 generations before a second bottleneck and693

growth event occurs (Figure 1).694

Figure S1 shows changes in expected heterozygosity during this period for a range of s.695

Qualitatively, the heterozygosity dynamics seen in the isolated periods of OOA demography696

(Figures 2 and 3) are also seen in numerical solutions over the full trajectory. Heterozy-697

gosity decreases following the �rst bottleneck and temporarily undershoots its equilibrium698

value when selection is strong. Heterozygosity again drops after the second bottleneck but699

rapidly begins to recover during the following exponential growth period. It is only for very700

strongly deleterious variation that we see the over- and undershooting behavior that appear701

in the isolated bottleneck and bottleneck plus growth models. The timescale of the OOA702

demography is not long enough for these behaviors to occur when selection is weaker. As is703

clear from the lower heterozygosity of non-African populations (Yu et al., 2002), the growth704

phase does not persist long enough for neutral variation to recover. However, heterozygosity705

at strongly selected sites is predicted to recover more quickly.706
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Figure S1: The response of heterozygosity at sites under purifying selection to events

following the OOA bottleneck. The three vertical lines here correspond to events b, c, and d

in Figure 1. N0 corresponds to the population size preceding event b. For the strongest selection

coe�cients heterozygosity can be seen to undershoot and begin to increase, but for most the decrease

is monotonic following b. Following c, heterozygosity only overshoots its value at mutation-selection

balance and begins to decrease when selection is strongest (2N0s = 116).

Evaluation of numerical precision707

For the numerical analyses of equation 1 it was necessary to choose a grid of points on the708

derived allele frequency x and a time step for t. Due to the highly peaked nature of the709

frequency spectrum as one approaches zero it was more important to have a dense grid of710

values at small x than at large x (Evans et al., 2007). Speci�cally, we required an algorithm711

that generates a nonuniform grid on x such that the grid density doubles at any change-point712

in density (Evans et al., 2007). The algorithm takes a maximum step size and number of713

grid points after which the grid interval should double. We then search for an initial interval714

size such that the �nal grid point is x = 1. The grid for all �gures of the main text uses an715

initial step size of x0 = 1.564 × 10−10, a maximum step size of 10−3, and doubles after 80716

iterations. This resulted in a grid with 2,525 points. The t interval used was 5 × 10−4 in717

units of the e�ective population size. Lowering this time interval did not a�ect results.718

We investigated the sensitivity of numerical solutions to the grid on x by starting with719

the equilibrium solution to equation 1 and solving this forward in time to evaluate the720

accumulation of numerical error. Figure S2 shows the percent error in the �rst four moments721
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of the frequency spectrum for di�erent selection coe�cients after the same amount of time722

as in Figure 1. Error is greatest as one considers higher order moments of the frequency723

spectrum, and is peaked at an intermediate value of s. Even though error is smaller for724

the �ner grid, the qualitative results in Figure 5 are una�ected (Figure S2). As PN/PT725

is in�uenced by higher moments of the frequency spectrum it may be more sensitive to726

numerical error. Results in the main text that are dependent on only the �rst two moments727

are also nearly identical.728
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1e−12 1e−09 1e−06 1e−03

0
2

4
6

8
1

0

s

p
e

rc
e

n
t 

e
rr

o
r 

m
o

m
e

n
t

moment 1

moment 2

moment 3

moment 4

(b) Grid size approximately doubled

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

1e−05 5e−05 5e−04 5e−03

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

s

p
ro

p
o
rt

io
n
 d

e
le

te
ri

o
u
s
 (

2
:1

 m
u
ta

ti
o
n
)

full●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

● 2

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
40

● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

200

● ● ● ● ●
●

●
●

●

●

●

●

●

●

●

●

2000

● ● ● ● ● ● ● ● ●
●

●
●

●

●

●

●
20000

● african
european

(c) Grid size used in main text (same as Figure 5)
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(d) Grid size approximately doubled

Figure S2: Little e�ect of numerical errors. Panels (a) and (b) show the accumulation of

errors in the �rst four moments of the frequency spectrum after a time period equivalent to that in

Figure 1, with the same initial population size, with (b) having about twice as many points as (a).

Panels (c) and (d) show Figure 5 using the same grids as (a) and (b).

Comparison to Wright-Fisher model729

We compare a few cases of di�usion results to a Wright-Fisher (WF) model in order to check730

our numerical solutions. For the WF model we solve for the expected site frequency spectrum731
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using the Markov chain approach described by Evans et al. (2007) with the standard Wright-732

Fisher transition matrix (Ewens, 2004). Figure S3 compares the evolution of heterozygosity733

shown in the middle line of Figure 2B (orange, 2N0s = 18.3) to the expected heterozygosity734

in the WF model. The results show the same qualitative behavior and only small-scale735

error (< 0.1% di�erence in relative heterozygosity). Figure S4 compares the evolution of736

heterozygosity shown in the middle line (orange, 2N0 = 5.9) of Figure 3B to the expected737

heterozygosity in the WF model. It was necessary in this case to scale the population size738

down because the large size of the population after exponential growth makes the transition739

matrix very large. The models should have approximately the same behavior as long as the740

product of N and s is the same each generation and that time is rescaled. We again �nd741

very close agreement. We �nally compare WF and di�usion results for PN/PT over the OOA742

trajectory for s = 6.31e−4. Figure S5 shows that the agreement between the models is very743

good except when the sample size is very large (k = 20, 000). The period when agreement744

is poor occurs during the OOA bottleneck. At this time the e�ective size of the population745

2N = 3, 722 is much less than the sample size, and this will create discordance between the746

di�usion and WF models.747
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Figure S3: Comparison of WF model and di�usion in bottleneck heterozygosity.
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Figure S4: Comparison of WF model and di�usion in bottleneck+growth heterozygos-

ity.
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Figure S5: Comparison of WF model and di�usion in PN/PT over the OOA trajectory.

Sensitivity of derived allele count to quality �lters748

Substantial care was taken by the ExAC curators to provide high quality genotype calls749

(Lek et al., 2016). However, we �nd that the di�erence in the derived allele count between750

AFR and NFE clusters in the ExAC data is sensitive to two quality measures. The �rst751

of these is the tranche level which is calculated when recalibrating variant quality scores752

against a training set of known variants. A tranche level of 99.6% means that variants are753

chosen with a log-odds of being a true variant threshold such that there is 99.6% sensitivity754
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of true variants in the training set (DePristo et al., 2011). Thus, choosing a higher tranche755

level means a greater number of both false positives and true variants. The second �lter756

was applied after the tranche level had been chosen. For this we removed sites that did not757

successfully genotype in a certain fraction of individuals in both the African and European758

clusters. For both �lters increasing stringency tended to decrease the excess number of759

derived alleles in the African cluster, and whether there is an excess of derived alleles in760

the African versus European cluster depends on the combination used (Figure S6). For the761

analysis in the main text we use a tranche level of 99.6% and cuto� of 80%.762

tranche

missingness cutoff threshold

Figure S6: The dependence of the derived allele count on sequence quality �lters. The

e�ects of removing sites according to two quality �lters on the di�erence in derived allele count

between African and European samples. The overall di�erence shrinks as expected as we remove

sites from consideration, and for very loose criteria on missingness (i.e. removing sites where the

fraction of samples with no genotype is less than 0.8) the sign of the di�erence changes.
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Relative di�erences between between African and European763

1e−06 1e−05 1e−04 1e−03 1e−02

0
.0

0
0

.1
0

0
.2

0
0

.3
0

A: Relative difference (AFR−OOA)/OOA in
heterozygous genotypes

s

re
la

ti
ve

 d
if
fe

re
n

c
e

 p
e

r 
M

b
p

selection + mutation
no selection + mutation
no selection + no mutation

1e−06 1e−05 1e−04 1e−03 1e−02

−
5

−
4

−
3

−
2

−
1

0

B: Relative difference (AFR−OOA)/OOA in
homozygous genotypes

s

re
la

ti
ve

 d
if
fe

re
n

c
e

 p
e

r 
M

b
p

1e−06 1e−05 1e−04 1e−03 1e−02

−
0

.0
8

−
0

.0
4

0
.0

0

C: Relative difference (AFR−OOA)/OOA in

derived alleles

s

re
la

ti
ve

 d
if
fe

re
n

c
e

 p
e

r 
M

b
p

Figure S7: Strati�cation of expected di�erences by selection coe�cient, relative
to value in the OOA trajectory. The same situation as in Figure 6 but di�erences are
given relative to the OOA value. We show, for a range of selection coe�cients, the expected
di�erence per Mbp between the OOA and African model, relative to the OOA value, in (A)
heterozygous genotypes, (B) homozygous genotypes, and (C) derived alleles. The vertical
axis gives the expected di�erence per Mbp per diploid genome. For derived allele count and
derived allele homozygosity this includes �xations since the start of the population histories
shown in Figure 1. No selection + mutation refers to numerical solutions setting s = 0
following the OOA bottleneck in the European trajectory. No selection + no mutation

refers to the same, but turning o� new mutations as well.

Figure S8: Relative di�erences ((AFR−NFE)/NFE) in heterozygosity, homozy-
gosity, and derived allele frequency strati�ed by GERP score. The same situation
as in the bottom row of Figure 9 but di�erences are given relative to the NFE value. Rela-
tive Heterozygosity (A), homozygosity (B), and derived allele frequency (C) di�erences for
the African and non-Finnish European population groups in ExAC plotted against binned
GERP scores. Dotted lines provide 95% con�dence intervals obtained by bootstrapping
across sites within each bin.
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Figure S9: Cumulative di�erence in GERP score burden. The cumulative di�erence
in the GERP score burden starting with −2. Blue lines show thirty samples bootstrapped
across sites. The �nal blue point and bars show the mean di�erence in GERP burden and
95% con�dence interval from 200 bootstrap replicates.

Approximating the expectation of PN/PT764

Since the simplest prediction of deleteriousness is whether a mutation is synonymous or765

nonsynonymous, we write the proportion of variants that are deleterious as766

E[PN/PT ] ≈
E[P k

N ]

E[P k
N ] + E[P k

S ]
. (5)

P k
N and P k

S are the expected total numbers of variants in a sample of size k that are nonsyn-767

onymous and synonymous respectively, and PT is their sum. These correspond to polymor-768

phism counts such as those used in a McDonald-Kreitman testMcDonald and Kreitman769

(1991). Superscripts are dropped when considering all variants in the population. These770

quantities can be computed for a given site frequency spectrum as771

P k(t) =

∫ 1

0

(
1− xk − (1− x)k

)
f(x, t)dx (6)
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or772

P (t) =

∫ 1

1
2N

f(x, t)dx (7)

(Ewens, 2004) depending on whether we consider a sample of size k or the entire population.773

We want to be able to calculate the expectation of PN/PT , where774

E[PN/PT ] = E

[
PN

PN + PS

]
. (8)

One di�culty in calculating this value is that the random variables in the numerator and775

the denominator can both be zero. We �rst make the approximation that776

E

[
PN

PN + PS

]
≈ E

[
PN

PN + PS + 1

]
. (9)

Under the Poisson random �eld model PN and PS are both Poisson distributed. Writing

their means as λN and λS, we can calculate

E

[
PN

PN + PS + 1

]
=
λN
[
e−λN−λS + λN + λS + 1

]
(λN + λS)2

(10)

≈ E[PN ]

E[PS] + E[PN ]
.

The �nal approximation works as long as PT is large because e−λN−λS will be large. Since777

this includes neutral alleles as well as deleterious ones, the approximation should work even778

when selection is strong.779

Equilibrium properties of PN/PT780

Knowing that E[PN/PT ] ≈ E[PN ]
E[PN ]+E[PS ]

is a good approximation we can now ask how the781

forces of mutation, selection, and drift a�ect this value. These forces will cancel out at782

equilibrium, but they can still be separated out within the di�usion equation. Dropping the783

expectation notation and applying the chain rule we can write784

d

dt

(
PN
PT

)
=

PN
PN + PS

(
P ′N
PN

− P ′N + P ′S
PN + PS

)
. (11)
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Since we are assuming that only nonsynonymous mutations are selected against only the

P ′N terms are a�ected by selection. If fN(x, t) is the frequency spectrum at nonsynonymous

sites, then we can write

P ′N =
d

dt

∫ 1

1
2N

fN(x, t)dx

=

∫ 1

1
2N

(
d

dx
[Sx(1− x)fN(x, t)] +

1

2

d2

dx2
[x(1− x)fN(x, t)]

)
dx

The left term of this gives the instantaneous change due to selection which we write as (P ′N)γ.785

The notation ()γ is used to indicate the portion of a rate that is due to selection. This rate786

is negative and is balanced out by drift and selection at equilibrium.787

(P ′N)γ =

∫ 1

1
2N

∂

∂x
[Sx(1− x)fN(x, t)] dx. (12)

Substituting the equilibrium equation for the frequency spectrum,788

fN(x) = θN
e−2S(1− e2S(1−x))

(e−2S − 1)x(1− x)
, (13)

this integral evaluates to789

(P ′N)γ = −SθN
e−2S − e−S/N

e−2S − 1
≈ −SθN (14)

if selection is not too strong, and where θN is the population-scaled mutation rate to non-

synonymous alleles. We can then calculate the equilibrium change in PN/PT that is due to

selection by only taking the P ′N terms in equation 11 and only considering the change in PN

that is due to selection
(
(P ′N)γ

)
. The equilibrium decrease in PN/PT that is due to selection

can then be written as

d

dt

(
PN
PT

)
γ

= −SθN
(

1

PS + PN
− PN

(PS + PN)
2

)
= −SθN

(
PS

(PS + PN)
2

)
(15)
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This rate does not depend on θ, and we can show this by writing790

θ = θN + θS = πθ + (1− π)θ, (16)

where π is the proportion of mutations that are nonsynoymous, and θS is the population-791

scaled mutation rate to synonymous alleles. If PS := θSFS and PN := θNFN , we can see that792

the rate does not depend on the population mutation rate θ by making substitutions into793

equation 15.794

d

dt

(
PN
PT

)
γ

= −S
(

π(1− π)FS
(πFN + (1− π)FS)2

)
. (17)

Although the F are the same as the P but with θ = 1. When comparing this value between795

di�erent population sizes, it is important to note that this is a rate per 2N generations, so796

we need to scale to generations when comparing rates.797

The rate for a sample of size k798

When considering the rate of change due to selection of PN/PT in a sample of size k, the

same basic equation applies, except that we have

d

dt

(
PN
PT

)k
γ

= (P ′N)
k
γ

(
1

P k
S + P k

N

− P k
N(

P k
S + P k

N

)2
)

= −θN
∫ 1

0

(
1− xk − (1− x)k

) 2S2e−2Sx

1− e−2S
dx

(
P k
S(

P k
N + P k

S

)2
)

= −
∫ 1

0

(
1− xk − (1− x)k

) 2S2e−2Sx

1− e−2S
dx

(
π(1− π)F k

S(
πF k

N + (1− π)F k
S

)2
)
. (18)

This is solved by numerical integration.799
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