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Supplementary	Information	S1.	NCD	method	and	power	analyses	

	

Frequency	equilibrium	

With	 overdominance,	 given	 selection	 coefficients	 s	 and	 t	 against	 the	 AA	 and	 BB	 homozygotes,	

respectively,	the	deterministic	frequency	equilibrium	(feq)	is	given	by:	

𝑓!"! =
!
!!!

		and		𝑓!"! = 1 − 𝑓!"!	(1)	

Under	symmetric	overdominance,	selection	coefficients	of	both	homozygotes	are	the	same	(	t = s ),	

and	thus	 feq	=	0.5.	With	asymmetric	overdominance,	homozygotes	have	different	 fitnesses	 (t	≠	s)	 -	

which	might	be	more	prevalent	in	natural	systems	(Hedrick	2012)	-	and	it	follows	that	feq	≠	0.5.		

	

A	classic	example	of	asymmetric	overdominance	 is	 the	case	of	 the	β-globin	mutation	 (HbS),	which	

causes	sickle	cell	anemia.	In	regions	of	endemic	malaria	the	fitness	of	the	HbA/HbS	heterozygotes	is	

the	highest,	while	the	HbA	homozygote	has	fitness	approximately	nine	times	higher	than	that	of	the	

HbS	homozygote,	with	the	resulting	equilibrium	frequency	of	the	Hbs	allele	being	0.13	(Allison	and	

Clyde	1961).	

	

Under	 frequency-dependent	 selection,	 feq	will	 depend	on	 the	 frequency	of	 the	 favored	allele,	 and	

under	fluctuating	selection,	the	selected	allele’s	frequency	will	depend	on	the	temporal	and	spatial	

scales	of	selection	(Charlesworth	and	Charlesworth	2010).	

	

NCD	properties	

The lower the NCD value, the lower the average distance between the SNP frequencies and 

the tf. From equation 1 (main paper) it follows that the maximum value for NCD2(tf) is the tf 

itself (for tf ≥ 0.25), which occurs when there are no SNPs and the number of FDs ≥ 1. The 

maximum NCD1 value approaches – but never reaches – tf when all SNPs are singletons. 

The minimum possible value for both NCD1 and NCD2 is 0, when all SNPs segregate at tf 

and, in the case of NCD2, the number of FDs = 0  (figs. S1 and S2).  Because NCD 

equations use the folded SFS, the highest allele frequencies are 0.5. This means that, if tf is 

greater than or equal to 0.25 (which is half of the maximum allele frequency possible), the 

maximum distance to tf is tf itself. When tf is lower than 0.25, say 0.2, then the maximum 

NCD value would be found when allele frequencies are 0.5, in which case the distance 

would be 0.5-0.2=0.3, i.e, higher than the tf. For tf < 0.5/2, the maximum NCD value is 0.5-tf 

(e.g., if tf = 0.2, the maximum NCD is 0.3, i.e, 0.5-0.2). In such cases, the interpretation of 
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NCD values is less straightforward since low values are also compatible with neutrality and 

purifying selection. We thus explore only tf = {0.3, 0.4, 0.5}. 

	

Simulating	balancing	selection	

Under	the	overdominance	model,	for	a	bi-allelic	locus	with	alelles	A	and	B,	the	relative	fitnesses	of	

the	 three	 genotypes	 are:	 wAA	 =	 1	 –	 s,	 wAB	 =	 1,	 and	 wBB	 =	 1	 –	 t,	 where	 s	 and	 t	 are	 the	 selection	

coefficients	of	 the	 two	homozygous	genotypes,	and	the	 frequency	equilibrium	(feq)	 is	equal	 to	s/(s	

+t),	as	in	Equation	1.		

	

We	simulated	sequences	evolving	neutrally	and	under	balancing	selection	using	MSMS	(Ewing	and	

Hermisson	2010).	 In	order	 to	 achieve	 the	desired	 feq,	we	parameterized	 selection	 in	 the	 following	

way:	 		wAB =1+(2Nes) ,	 𝑤!! = 1 + [2𝑤!" − (
!!"
!!!!"

)],	 andwAA =1 ,	 where	 Ne	 is	 the	 effective	

population	size	used	to	scale	the	coalescent	simulations	and	s	is	the	selection	coefficient	for	one	of	

the	 alleles.	 The	 selection	 coefficient	 is	 always	 set	 to	 s	 =	 0.01,	 since	 the	 distance	 from	 the	 tf	 is	

determined	by	the	proportional	difference	 in	selection	against	homozygotes,	not	the	s	value	 itself.	

For	 simulations	 with	 selection,	 we	 only	 retained	 those	 where	 the	 balanced	 polymorphism	 is	 still	

segregating	at	the	time	of	sampling.	

	

Power	analyses	

Implementation	of	NCD.	Power	for	NCD2	is	greater	than	for	NCD1	for	all	tf:	feq	=	0.5	(average	power	

of	0.94	for	NCD2(0.5)	vs.	0.88	for	NCD1(0.5),	averaged	across	populations	and	Tbs;	table	1),	feq	=	0.4	

(0.90	for	NCD2(0.4)	vs.	0.80	for	NCD1(0.4))	and	feq	=	0.3	(0.86	for	NCD2(0.3)	vs.	0.73	for	NCD1(0.3))	

(table	1,	Figure	2).	The	main	properties	discussed	for	NCD2	in	the	main	paper	are	also	true	for	NCD1:	

higher	power	for	smaller	windows,	and	for	ancient	selection	(see	below).	On	the	other	hand,	sample	

size	impacts	NCD1	more	than	NCD2	(see	below	and	table	S1).	

	

When	NCD1	is	combined	with	HKA	(NCD1+HKA),	we	see	an	increment	in	power	compared	to	NCD1	

alone	(S1	table)	which	further	demonstrates	that	by	adding	information	from	fixed	differences	there	

is	gain	in	power	(which	is	why	NCD2	outperforms	NCD1).	

	

Sequence	length	and	Tbs.	NCD	power	is	higher	for	3kb	regions	than	for	12kb	regions.	For	NCD1,	the	

power	 increment	for	shorter	regions	 is	 less	pronounced	than	for	NCD2	 (table	S1),	 likely	due	to	the	

lower	number	of	informative	sites	increasing	noise	(NCD1	only	uses	SNPs,	whereas	NCD2	uses	SNPs	

and	FDs).	This	is	true	not	only	for	NCD(0.5)	(about	10%	reduction	in	power	for	12	kb	compared	to	3	



 4 

kb),	 but	 a	 similar	picture	emerges	 for	NCD(0.4)	 (with	19%	 reduction	 in	power)	 and	NCD(0.3)	 (24%	

reduction	 in	 power)	 (table	 S1;	 figs.	 S3-S8).	 When	 comparing	NCD1	 and	NCD2,	 we	 note	 that	 the	

power	 increment	for	3	kb	compared	to	6	kb	is	stronger	for	NCD2	 than	for	NCD1;	 in	the	latter,	 in	a	

few	instances	power	for	6	kb	may	be	slightly	larger	for	6	kb.	This	is	likely	due	to	the	fact	that	narrow	

windows	have	a	stronger	effect	on	the	number	of	available	informative	sites	(IS)	for	NCD1	than	for	

NCD2	(SNPs	+	FDs).	Regardless,	the	overall	trend	is	that	power	is	similar	between	3	and	6	kb,	and	in	

most	cases	higher	for	3	kb.	For	NCD1,	the	power	trend	regarding	Tbs	is	similar	to	NCD2:	5	>	3	>	1	Ma.	

	

Frequency	equilibrium	(feq)	of	0.2.	Selection	with	feq	=	0.2	results	in	low	power	across	all	parameters	

and	tf	values	(figs.	S3-S8),	so	we	do	not	further	explore	this	target	frequency.		

	

Demographic	scenarios.	The	power	under	the	Asian	scenario	 is	 lower	than	that	of	the	African	and	

European	 scenarios	 (average	 NCD(0.5)	 of	 0.48).	 One	 possible	 explanation	 is	 the	 lower	 Ne	

(e.g.(Gutenkunst	 et	 al.	 2009;	 Gravel	 et	 al.	 2011)):	 lower	 Ne	 causes	 random	 genetic	 drift	 to	 be	

stronger	 in	 this	 population,	 affecting	 the	 SFS	 under	 both	 neutrality	 and	 balancing	 selection.	 In	

neutral	 loci,	 lower	Ne	can	result	 in	a	higher	proportion	of	alleles	at	 intermediate	 frequency,	which	

makes	 the	 neutral	 SFS	 more	 similar	 to	 the	 expected	 SFS	 under	 LTBS.	 This	 is	 observed	 when	

comparing	 the	SFS	of	Asian	populations	 to	 those	of	African	and	European	ones	 (Gutenkunst	et	al.	

2009).	 In	 loci	 under	 LTBS,	 lower	 Ne	 implies	 in	 reduced	 efficacy	 of	 balancing	 selection,	 and	 could	

result	 in	the	selected	alleles	being	less	efficiently	maintained	close	to	the	feq,	making	the	SFS	more	

similar	to	that	expected	under	neutrality.	Both	effects	would	reduce	the	power	of	NCD.	

	

Also,	unlike	NCD2,	for	which	African	and	European	simulations	have	very	similar	power	values	in	all	

cases,	for	NCD1	we	see	that	power	is	similar	for	these	populations	in	most	cases,	but	is	considerable	

lower	 for	Europe	when	 tf	=	0.3	and	 feq	=	0.5	 (table	S1),	while	still	high	 in	both	when	tf	=	 feq	=	0.3,	

which	speaks	in	favor	of	considering	different	target	frequencies	when	scanning	the	genome.	

	

Sample	size.	Power	analyses	reported	the	main	text	were	derived	from	sampling	100	chromosomes	

(50	diploid	individuals)	for	each	population.	We	additionally	explored	power	for	samples	of	60	and	

20	chromosomes	(table	S1).	

	 	

For	NCD2,	the	most	trends	are	the	same	across	sample	sizes,	in	that:	power	is	highest	for	3	kb	and	

lowest	for	12	kb;	highest	for	5	Ma	and	lowest	for	1	Ma;	similar	for	African	and	European	simulations,	

but	 considerably	 lower	 for	 Asian	 simulations;	NCD2	 has	 higher	 power	 than	NCD1.	 For	 the	 small	
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sample	size	(n=20),	the	trend	of	power	3	kb	>	6	>	12	kb	does	not	always	hold	for	Tbs	=	1	Ma	and	in	

some	instances	of	Tbs	=	3	Ma,	where	it	may	occur	that	6	>	3	>	12	kb.	For	the	Asian	simulations,	at	n	=	

20	 and	 Tbs	 =	 1	Ma,	 we	 see	 cases	 where	 power	 is	 higher	 for	 12	 than	 for	 3	 kb,	 even	 though	 the	

average	power	 for	any	 length	given	 those	conditions	 is	extremely	 low.	These	patterns	 likely	 result	

from	the	reduced	number	of	SNPs	segregating	in	the	simulations	with	a	low	sample	size	and	low	Tbs,	

which	 is	 partially	 compensated	 by	 an	 increase	 in	 window	 size.	 In	 Asia,	 the	 even	 more	 aberrant	

patterns	may	be	due	to	the	effect	of	the	lower	Ne	on	the	number	of	segregating	sites.		

	

More	importantly,	in	the	timescale	and	window	length	at	which	NCD2	performs	best	(Tbs	=	3,	5;	L	=	

3	kb),	both	n=100	and	n=60	yield	similar	power	values,	and	those	are	consistently	higher	than	for	n	=	

20.			

	

For	NCD1,	the	main	trends	also	hold	regardless	of	sample	size:	as	with	n	=	100,	power	tends	to	be	

highest	for	either	3	or	6	kb;	highest	for	Tbs	=	5	and	lowest	for	Tbs	=	1	Ma;	power	is	similar	for	African	

and	European	simulations,	except	when	feq	=	0.5	and	tf	=	0.3,	when	Africa	has	higher	power	(this	is	

true	for	sample	sizes	of	50	and	30	individuals).	On	the	other	hand,	there	is	a	clear	pattern	of	overall	

power	reduction	when	n	=	20,	unlike	NCD2,	where	power	values	remain	high	even	for	small	sample	

size.	This	is	likely	due	to	the	fact	that	the	reduction	in	polymorphic	sites	caused	by	small	sample	sizes	

impacts	NCD1	more	strongly	than	NCD2	because	those	are	the	only	informative	sites	considered	by	

NCD1,	whereas	NCD2	also	takes	FDs	into	account.		

	

Other	 neutrality	 tests.	 We	 simulated	 15	 kb	 windows	 and	 calculated	 T1	 and	 T2	 with	 BALLET	

(DeGiorgio	 et	 al.	 2014)	 for	 windows	 of	 100	 IS	 for	 simulations	 with	 African	 and	 European	

demography,	and	selected	the	highest	T1	or	T2	value	from	each	simulation	to	obtain	their	power	for	

the	 same	 set	 of	 parameters	 used	 for	 the	 other	 simulations.	We	 again	 used	 15	 kb	windows	 from	

simulations	for	African	and	European	demographic	scenarios	to	calculate	ß	for	windows	of	1,	2	and	3	

kb.	The	highest	value	from	each	simulation	(neutral	or	with	selection)	was	chosen,	and	power	was	

verified	at	FPR=5%.	When	 focusing	on	 the	 tests	 that	use	only	polymorphic	 sites,	NCD1	 has	 similar	

power	to	TajD	when	feq	=	0.5,	and	it	outperforms	it	when	feq	departs	from	0.5	(table	S1).	Power	for	T1	

and	T2	is	extremely	similar	to	those	originally	reported	by	DeGiorgio	et	al.	(2014),	and	our	power	for	

TajD	 is	 substantially	higher	 than	 in	DeGiorgio	et	al.	 (2014)	 (probably	due	 to	 the	choice	of	window	

size	and	different	models).		
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Supplementary	Information	S2.	Genome-wide	scan	

	

Filtering	out	windows	with	few	informative	sites	

Genome-wide	studies	of	natural	selection	typically	place	a	threshold	on	the	minimum	number	of	ISs	

in	the	queried	window	(e.g.	at	least	10	in	(Andrés	et	al.	2009),	or	100	in	(DeGiorgio	et	al.	2014).	We	

observe	considerable	variance	in	the	number	of	ISs	per	3	kb	window	in	the	1000G	data	and	find	that	

NCD2	has	high	variance	when	the	number	of	ISs	is	low	in	neutral	simulations	(figs.	S11	and	S17).	We	

therefore	excluded	windows	with	less	than	10	ISs	in	a	given	population,	and	retained	the	remainder	

since	above	that	threshold	NCD2	stabilizes	(fig.	S11).		

	

Correcting	NCD2	values	for	number	of	informative	sites	

Neutral	 simulations	 with	 different	 mutation	 rates	 were	 performed	 in	 order	 to	 retrieve	 10,000	

simulations	for	each	value	of	IS	observed	in	the	real	data	(fig.	S17).	NCD2	(with	tf	=	0.3,	0.4,	0.5)	was	

calculated	for	all	simulations,	allowing	the	assignment	of	scanned	windows	and	the	calculation	of	Ztf-

IS	(Eqn.	2,	main).	

		

Assigned	tf	values	

When	a	window	is	an	outlier	for	several	tf	values,	we	sought	to	identify	the	tf	value	that	minimizes	

NCD2(tf).	As	described	in	the	main	text	(section	“Assigned	tf	values”),	the	p-values	obtained	from	Ztf-

IS	were	used	to	identify	the	tf	value	that	yields	the	lowest	empirical	p-value	for	the	window	(tables	S3	

and	S4).		

	

Among	 the	 candidate	 windows	 for	 the	 three	 tf	 values,	 on	 average	 52%	 and	 53%	 (outlier	 and	

significant	windows,	 respectively)	 are	 assigned	 to	 tf	=	0.3	 (table	 S3).	 For	 the	outlier	windows,	 the	

proportion	of	assigned	windows	to	0.4	 is	31%	and	to	0.5	 is	17%	(almost	3-fold	difference	between	

0.3	 and	 0.5).	 For	 the	 significant	 windows,	 0.4	 (22%)	 and	 0.5	 (25%)	 have	 similar	 proportions	 of	

windows	assigned	to	them.		

	

For	the	outlier	genes	in	table	S4,	the	assigned	tf	value	for	a	gene	is	for	the	window	with	the	lowest	

empirical	 p-value,	 and	 was	 defined	 for	 each	 population	 separately.	 Most	 genes	 have	 the	 same	

assigned	tf	value	in	different	populations:	67%	of	the	African	genes	have	the	same	assigned	tf	in	LWK	

and	YRI,	and	63	%	of	the	European	genes	have	the	same	assigned	tf	for	GBR	and	TSI.	Finally,	86%	of	

the	shared	genes	have	the	same	assigned	tf	 for	at	 least	 two	populations	 from	the	same	continent	

and	often	(46%)	for	all	populations.		
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Coverage	as	a	proxy	for	undetected	short	duplication		

To	 test	 whether	 our	 signatures	 of	 LTBS	 are	 driven	 by	 undetected	 short	 duplications,	 which	 can	

produce	 mapping	 and	 SNP	 call	 errors,	 we	 analyzed	 an	 alternative	 human	 genome-wide	 dataset,	

sequenced	to	an	average	coverage	of	20x-30x	per	individual	(Meyer	et	al.	2012;	Prüfer	et	al.	2013).	

We	used	an	independent	dataset	because	read	coverage	data	is	 low	and	cryptic	 in	the	1000G,	and	

putative	duplications	affecting	the	SFS	must	be	at	appreciable	 frequency	and	should	be	present	 in	

other	 data	 sets.	We	 considered	 2	 genomes	 from	 each	 of	 the	 following	 populations:	 Yoruba,	 San,	

French,	Sardinian,	Dai,	and	Han	Chinese.	For	each	sample,	we	retrieved	positions	above	the	97.5%	

quantile	of	the	coverage	distribution	for	that	sample	(“high	coverage”	positions).	For	each	window	

with	signatures	of	LTBS,	we	calculated	the	proportion	of	the	3kb	window	having	high	coverage	in	at	

least	two	samples	and	plotted	the	distributions	for	different	NCD2	Ztf-IS	p-values.	
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Supplementary	 Information	 S3.	 Ruling	 out	 possible	 biological	 confounding	

factors	

	

We	 explored	 the	 influence	 of	 two	 possible	 biological	 confounding	 factors,	 which	 could	 increase	

genetic	diversity	in	the	absence	of	balancing	selection:	Neandertal	introgression	(only	for	European	

candidates)	and	ectopic	gene	conversion.	Here,	the	set	of	significant	or	outlier	windows	is	defined	as	

the	union	of	windows,	 considering	 all	 tf	 (0.3,	 0.4,	 0.5)	values.	 The	 genes	 are	 those	overlapped	by	

those	windows.	

	

Neandertal	introgression		

Background.	 Genomic	 regions	 that	 contain	 introgressed	 haplotypes	 from	 archaic	 hominins	

(Denisova,	Neandertal)	have,	on	average,	slightly	older	time	to	the	most	recent	ancestor	and	higher	

diversity	than	the	rest	of	the	genome.	This	provides	some	potential	for	finding	candidates	of	LTBS	in	

Europeans	–	and	absent	in	Africans	–	that	are	rather	due	to	introgression.	However,	in	the	absence	

of	balancing	 (or	positive)	selection,	 introgressed	segments	are	not	expected	to	reach	 intermediate	

frequencies	(minor	allele	frequency,	MAF	≥	0.3).	As	NCD2	requires	both	intermediate	frequencies	of	

SNPs	 and	 greatly	 proportion	 of	 FDs	 to	 SNPs,	 we	 do	 not	 expect	 that	 introgressed	 regions	 would	

contribute	greatly	 to	 the	candidate	windows	defined	 in	 the	main	paper.	We	provide	 the	 following	

results	to	show	that	this	is	indeed	true.	

	

The	 proportion	 of	 introgressed	 SNPs.	 We	 independently	 tested	 the	 enrichment	 of	 Neandertal	

introgression	 among	 candidate	 windows	 in	 TSI	 and	 GBR	 by	 using	 the	 re-sampling	 approach	

described	 for	 functional	 enrichment	 analysis	 (information	 S3,	 below).	 Putative	 Neandertal-

introgressed	 SNPs	were	 ascertained	per	 population	 as	 follows:	 1)	 select	 SNPs	 that	 pass	 our	 filters	

and	that	are	 in	 the	candidate	windows;	2)	select	 the	SNPs	that	segregate	 in	each	of	 the	European	

populations	while	being	monomorphic	in	YRI;	3)	select	the	SNPs	that	also	overlap	a	segment	inferred	

to	 be	 of	 Neandertal	 origin;	 4)	 select	 the	 SNPs	 that	 match	 one	 of	 the	 alleles	 carried	 by	 the	 Altai	

Neandertal	 (Prüfer	 et	 al.	 2013),	 and	 where	 Altai	 has	 at	 least	 one	 allele	 different	 to	 all	 YRI.	 The	

proportion	of	all	SNPs	that	are	putatively	Neandertal-introgressed	was	computed	independently	for	

GBR	and	TSI	following	the	steps	above,	for	each	window	set	(outlier	and	significant,	all	tf	values)	and	

for	 three	 maps	 of	 Neandertal	 introgression	 (Sankararaman	 et	 al.	 2014;	 Vernot	 and	 Akey	 2014;	

Vernot	 et	 al.	 2016).	Where	 provided	 (Sankararaman	 et	 al.	 2014;	 Vernot	 and	Akey	 2014)	we	 used	

matching	population	specific	haplotype	calls,	and	merged	haplotypes	across	individuals;	in	the	case	

of	the	map	from	(Vernot	et	al.	2016)	we	used	the	combined	European	haplotypes.	Observed	values	



 9 

were	compared	to	those	obtained	by	1,000	re-samplings	of	the	same	number	of	windows	from	all	

the	scanned	windows.		

	

For	 both	GBR	 and	 TSI	we	 find	 that	 significant	 and	 outlier	windows	 are	 not	 enriched	 in	 putatively	

Neandertal	 introgressed	SNPs	(defined	 in	methods	below),	and	are	 in	 fact	significantly	depleted	of	

them	 (fig.	 S16).	 This	 is	 consistent	 between	 the	 three	 introgression	 maps,	 referred	 to	 as	 v2014	

(Vernot	and	Akey	2014),	v2016	(Vernot	et	al.	2016)	and	s2014	(Sankararaman	et	al.	2014).	In	keeping	

with	expectations	given	the	average	fraction	of	a	European	genome	that	is	of	Neandertal	ancestry,	

we	 estimate	 the	 background	proportion	 introgressed	 SNPs	 as	 1-1.8	%.	 In	 contrast,	 significant	 and	

outlier	windows	range	from	0.4-0.8%	(reduction	in	introgressed	SNPs	~	50%).		

	

Individual	 haplotypes.	 Of	 course,	 finding	 a	 depletion	 of	 introgressed	 SNPs	 across	 the	 set	 of	

candidate	windows	does	not	preclude	that	specific	windows	are	NCD2	outliers	due	to	introgression.	

We	designated	as	putatively	introgressed	SNPs	if	1)	they	fall	 in	a	window	that	is	not	present	in	the	

union	of	the	equivalent	YRI	and	LWK	sets	and	is	present	in	any	map	of	Neandertal	introgression;	2)	

the	 proportion	 of	 SNPs	 in	 the	 window	 that	 are	 introgressed	 is	 ≥	 0.25;	 3)	 the	 median	 MAF	 of	

introgressed	SNPs	in	the	window	is	≥	0.2.		

	

We	find	that	for	GBR	and	TSI	there	are	only	four	and	five	outlier	windows	(four	in	both	populations)	

and	22	and	20	significant	windows	(15	in	both	populations),	respectively,	that	match	our	criteria	as	

an	intermediate	frequency	Neandertal	haplotype	(table	S4).		

	

Ectopic	gene	conversion	

We	 also	 investigated	 the	 possibility	 of	 ectopic	 gene	 conversion,	 which	 is	 another	 biological	

phenomenon	that	may	increase	diversity.	This	is	because	paralogs	that	are	close	to	each	other	on	a	

chromosome	may	 incorporate	 segments	 from	one	 another	 through	 ectopic	 gene	 conversion	 (also	

known	 as	 paralogous	 gene	 conversion),	 increasing	 diversity	 even	 in	 the	 absence	 of	 balancing	

selection.		

	

For	each	gene	 identified	as	 significant	 in	 LWK	 (see	main	 text),	we	analyzed	 the	distribution	of	 the	

number	 of	 paralogs	 that	 reside	 on	 the	 same	 chromosome.	 The	 set	 of	 significant	 genes	 does	 not	

show	 a	 systematic	 trend	 towards	 having	 more	 paralogs	 on	 the	 same	 chromosome	 than	 other	

autosomal	genes	(see	fig.	S15),	showing	that	this	is	not	a	general	issue.	In	both	cases,	more	than	60%	

of	the	genes	have	no	paralogs	on	the	same	chromosome.	
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We	nevertheless	singled	out	olfactory	receptor	(OR)	genes,	which	often	appear	in	tandem	and	may	

undergo	 ectopic	 gene	 conversion.	 Unlike	 the	 other	 significant	 and	 background	 genes,	 more	 than	

80%	of	 the	 significant	OR	 genes	 in	 LWK	have	 at	 least	 one	paralog	 on	 the	 same	 chromosome	 (fig.	

S15).	Thus,	ectopic	gene	conversion	does	not	appear	to	be	a	general	issue	among	significant	genes,	

with	the	exception	of	the	OR	genes.		
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Supplementary	Information	S4.	Functional	enrichment	analyses	of	candidate	

windows	and	their	SNPs	

	

Gene	Ontology	of	windows	

We	constructed	gene	annotation	(.gtf)	and	gene	set	(GO	accession	terms	and	associated	genes)	files	

to	run	GOWINDA.	In	order	to	build	the	.gtf	file,	we	started	by	downloading	from	ENSEMBL	biomart	

the	 hg19	 chromosome,	 start	 and	 end	 coordinates,	 ENSEMBL	 gene	 identifiers	 and	 external	 gene	

names	 for	 each	 autosomal,	 known,	 protein	 coding	 gene	 (18,564	 genes	 total;	 accessed	 February,	

2016).	26	genes	in	ENSEMBL	have	at	least	two	ENSEMBL	gene	IDs	associated	with	the	same	external	

gene	name,	which	can	 lead	to	the	same	gene	being	associated	with	the	same	GO	term	more	than	

once,	and/or	different	annotations	of	 the	gene	being	associated	with	different	GO	terms.	This	can	

have	 an	 adverse	 effect	 on	 the	 sampling	 estimates	 of	 GO	 enrichment,	 particularly	 if	 these	

“duplicates”	are	overlapping	in	the	genome.	We	solved	these	inconsistencies	in	an	iterative	fashion.	

1)	We	 renamed	genes	with	 the	 same	name	but	 located	on	different	 chromosomes	by	affixing	 the	

chromosome	number.	In	hg19	there	is	only	one	gene,	CKS1B,	located	on	chromosomes	1	and	5,	with	

this	problem.	(NB.	for	Grch38,	CKS1B	on	chromosome	5	is	now	named	CKS1BP3,	and	is	annotated	as	

a	pseudogene.)	2)	 If	 the	different	 coordinates	of	 the	gene	were	 located	 in	 the	 same	chromosome	

but	overlapping,	we	merged	all	gene	coordinates	to	create	a	single	gene	entry,	taking	the	minimum	

start	 and	 maximum	 end	 positions	 as	 the	 new	 gene	 start	 and	 end	 positions,	 respectively.	 3)	 For	

disjoint	duplicates,	we	simply	renamed	geneX	as	geneX_a,	geneX_b,	geneX_c	etc.	as	required.	This	

happens	only	for	a	few	genes.	The	.gtf	file	was	then	compiled	from	this	modified	gene	set.	

	

We	 downloaded	 the	 go-basic.obo	 and	 goa_human.gaf	 files	 from	 the	 Gene	 Ontology	 Consortium	

(accessed	Februrary,	2016).	A	custom	perl	script	was	used	to	parse	the	go-basic.obo	file	to	output	a	

table	 of	 GO	 terms	 and	 their	 definitions.	 Gene	 names	 (matching	 ensemble	 external	 gene	 names	

mentioned	 above)	 and	 associated	GO	 terms	were	 extracted	 from	 the	 goa_human.gaf	 file,	making	

sure	 that	 the	associated	protein	 taxon	was	human	(i.e.	 	9606).	For	 the	duplicate	coordinate	genes	

identified	above,	we	gave	each	gene	copy	the	same	GO	term	associations	as	for	their	parent	gene.	

	

GOWINDA	 was	 designed	 for	 SNP-based	 analysis	 so	 we	 considered	 the	 middle	 position	 of	 every	

scanned	window	as	the	target	site	and	extended	gene	coordinates	by	1,500	bp	up/down-stream	by	

using	the	option	updownstream1500	in	SNP	to	gene	mapping	(to	analyze	the	full	3kb	region).	

	



 12 

The	gene	enrichment	results	are	presented	in	the	main	text	(section	“Biological	pathways	influenced	

by	 LTBS”)	 and	 in	 tables	 S2-S4.	 In	 some	 analyses,	 the	 following	 set	 of	 HLA	 genes	was	 excluded	 to	

explore	 the	 influence	 of	 balancing	 selection	 outside	 of	 the	MHC	 locus,	 because	 these	 have	 prior	

evidence	of	LTBS:	HLA-B,	HLA-C,	HLA-DRB1,	HLA-DRB5,	HLA-DPA1,	HLA-DPA2,	HLA-DPB1,	HLA-DPB2,	

HLA-DQB1,	 HLA-DQB2,	HLA-DQA1,	HLA-DQA2	 (Tan	 et	 al.	 2005;	 Liu	 et	 al.	 2006;	Meyer	 et	 al.	 2006;	

Sanchez-Mazas	2007;	Solberg	et	al.	2008;	DeGiorgio	et	al.	2014;	Teixeira	et	al.	2015).	

	 	

Annotated	function	of	SNPs		

We	also	used	ENSEMBL	to	determine	the	functional	annotation	of	individual	SNPs.	We	defined	as	1)	

intergenic	SNPs	those	annotated	as:	“transcript	ablation”,	“transcript	amplification”,	“mature	miRNA	

variant”,	 “NMD	 transcript	 variant”,	 “non-coding	 transcript	 variant”,	 “upstream	 gene	 variant”,	

“downstream	 gene	 variant”,	 “TFBS	 ablation”,	 “TFBS	 amplification”,	 “TF	 binding	 site	 variant”,	

“regulatory	 region	 ablation”,	 “regulatory	 region	 amplification”,	 “feature	 elongation,”	 “regulatory	

region	variant”,	“feature	truncation”,	“intergenic	variant”;	2)	genic	SNPs	all	the	ones	not	annotated	

as	intergenic	(as	above);	3)	synonymous	SNPs	those	annotated	as	synonymous;	4)	non-synonymous	

SNPs	 those	 annotated	 as	missense;	 5)	 exonic	 SNPs	 those	 annotated	 as	 “stop	 gained”,	 “frameshift	

variant”,	 “stop	 lost”,	 “start	 lost”,	 “stop	gained”,	 “inframe	 insertion”,	 “inframe	deletion”,	 “missense	

variant”,	 “protein	 altering	 variant”,	 “incomplete	 terminal	 codon	 variant”,	 “stop	 retained	 variant”,	

“synonymous	 variant”;	 6)	 regulatory	 SNPs	 those	 annotated	 as	 “TFBS	 ablation”,“TFBS	

amplification”,“TF	 binding	 site	 variant”,	 “regulatory	 region	 ablation”,	 “regulatory	 region	

amplification”,	 “feature	 elongation”,	 “regulatory	 region	 variant”;	 and	 7)	 intergenic-not-regulatory	

SNPs	 those	 annotated	 as	 “non	 coding	 transcript	 variant”,	 “upstream	 gene	 variant”,“downstream	

gene	 variant”,	 “feature	 truncation”,	 “intergenic	 variant”.	 The	 results	 of	 the	 SNP	 annotation	

enrichment	analysis	are	presented	in	the	main	text	Figure	5	and	in	table	S5.	

	

To	 further	 test	 for	 enrichment	 of	 putatively	 regulatory	 sites	 among	 targets	 of	 LTBS	we	 also	 used	

RegulomeDB,	 a	 SNP-based	 annotation	 for	 known	 and	 predicted	 regulatory	 elements	 (Boyle	 et	 al.	

2012).	We	considered	both	each	RegulomeDB	score	 separately	as	well	 as	 a	 combination	of	 score:	

1a+1b+1c+2a+2b+2c,	1d+1e+3a+3b,	and	1f+5,	as	these	represent	SNPs	with	the	highest	evidence	for	

regulatory	function	(Boyle	et	al.	2012).	As	for	other	enrichment	analyses,	we	considered	the	sum	of	

scores	across	candidate	windows,	and	obtained	the	expectation	in	the	absence	of	LTBS	by	randomly	

re-sampling	background	windows	 (as	 above),	 generating	 a	distribution	used	 to	 assign	empirical	p-

values	for	the	enrichment	of	these	scores.	Results	are	provided	in	table	S5.	
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Supplementary	Information	S5.	Candidate	genes	found	in	previous	scans	

	

Many	 of	 the	 genes	 identified	 have	 previous	 evidence	 of	 balancing	 selection.	We	 considered	 258	

genes	reported	in	3	scans	for	balancing	selection	(Andrés	et	al.	2009;	Leffler	et	al.	2013;	DeGiorgio	et	

al.	2014).	We	 identify	 three	of	 the	six	genes	with	 strong	evidence	of	 trans-species	polymorphisms	

identified	 in	 (Leffler	 et	 al.	 2013)	 (HUS1,	 IGFBP7	 and	 PROKR2).	 We	 also	 identify	 the	 five	 genes	

identified	 by	 both	 an	 exon-based	 approach	 (Andrés	 et	 al.	 2009)	 and	 a	 genome-wide	 approach	

(DeGiorgio	et	al.	2014)	 (HLA-B,	CDSN,	LGALS8,	SLC2A9,	RCBTB1).	Overall,	89	 (of	265)	of	 the	outlier	

genes,	 and	 175	 (of	 1,594)	 of	 significant	 genes	 are	 found	 in	 previous	 scans.	 We	 also	 identify	

signatures	of	LTBS	in	the	blood-group	related	ABO	locus	(p	<	0.0008	in	all	populations),	a	well-known	

case	of	LTBS	in	humans	(Ségurel	et	al.	2012;	Ségurel	et	al.	2013).	Because	it	is	annotated	by	Gencode	

as	a	‘processed	transcript’	(version	19),	it	is	not	included	in	our	gene	tables.	

	

We	 find	 45%	 of	 the	 genes	 from	 (Andrés	 et	 al.	 2009)	 among	 the	 outliers	 (and	 78%	 among	 the	

significant)	 and	10%	and	38%	of	 genes	 from	 (DeGiorgio	 et	 al.	 2014)	 among	outlier	 and	 significant	

genes,	respectively.			
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Supplementary	Information	S6.	Increased	heterozygosity	in	archaic	genomes	

for	regions	detected	as	being	under	balancing	selection	in	modern	humans.	

	

Method	

	

We	 used	 the	 high	 coverage	 genomes	 for	 three	 archaic	 individuals,	 Altai,	 Vindija	 and	

Denisova	 (Green	 et	 al.	 2010;	Meyer	 et	 al.	 2012;	 Prüfer	 et	 al.	 2013).	We	 used	 assemblies	

generated	with	quality	thresholds	of	mapping	quality	of	at	least	25	and	100mer	mappability.	

For	each	 tested	NCD	window	we	counted	 the	number	of	 callable	bp	 (mappable	 to	hg19),	

and	 the	 number	 of	 heterozygous	 positions	 for	 each	 of	 the	 archaic	 genomes.	 To	 be	

considered	in	this	analysis,	a	NCD	window	needed	to	have	at	least	1500	bp	(i.e.	at	least	50%)	

callable	 in	 the	 archaic	 genome.	 For	 each	 of	 the	 archaic	 genomes	 we	 calculated	 the	

heterozygosity	for	NCD	candidate	windows	(both	‘significant’	and	‘outlier’)	in	each	modern	

human	population	(gbr,	tsi,	yri,	and	lwk).	Here	heterozygosity	is	the	number	of	heterozygous	

positions	divided	by	the	number	of	callable	positions.	Both	the	numerator	and	denominator	

are	 summed	 across	 all	 windows	 in	 each	 analysed	window	 set.	 For	 comparison	 this	 same	

metric	was	calculated	for	1,000	random	samples	(of	size	n	=	number	of	candidate	windows)	

of	analyzed	windows,.		

	

Results	

	

For	each	of	 the	archaic	hominins	we	 find	significant	 increases	 in	heterozygosity	 in	 regions	

we	identify	as	showing	signatures	of	balancing	selection,	when	compared	with	the	observed	

heterozygosity	in	non-candidate	windows	(all	p-values	<	0.001).	This	increase	is	greater	for	

the	more	restrictive	set	of	outlier	windows	(~	15	times	on	average)	than	the	significant	ones	

(~	 4	 times	 on	 average).	 For	 example,	 for	 candidates	 identified	 in	 GBR	 outlier	 windows	

contain	15.2	heterozygous	positons	per	kb	and	significant	windows	3.9,	while	the	genome-

wide	background	heterozygous	rate	is	0.2	(figure	S22).	
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Supplementary	Figures	

	

	

	
Fig.	 S1.	NCD	 analytical	 properties	 as	 a	 function	 of	 number	 of	 SNPs.	NCD2(0.5)	 value	 (y-axis)	 by	

number	of	SNPs	(x-axis).	Colors	correspond	to	a	fixed	FD	value	(20,	40,	100).	Top,	above	~1,500	SNPs	

(for	 any	 FD	 value),	NCD2(0.5)	 stabilizes	 and	 asymptotically	 approaches	 0.	 Bottom,	 a	 zoom-in.	 All	

SNPs	have	0.5	frequency.		
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Fig.	S2.	Analytical	properties	of	NCD2(0.5)	as	a	function	of	FD.	NCD2(0.5)	value	(y-axis)	by	number	

of	FDs	(x-axis).	Colors	correspond	to	different	frequencies	of	the	SNPs	in	the	window.	Top,	when	FDs	

~500,	NCD2(0.5)	stabilizes	and	asymptotically	approaches	0.5.	Bottom,	a	zoom-in.	All	20	SNPs	have	

the	 same	 frequency.	 The	 minimum	 NCD2(0.5)	 value	 is	 different	 for	 the	 different	 colors	 (see	

information	S1).	
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Fig.	S3.	Effect	of	 sequence	 length	on	NCD2(0.5)	power	 (Africa).	ROC	curves	 for	 sequence	 lengths	3	 (left),	6	 (middle)	and	12	kb	 (right).	Each	plot	 shows	

NCD2(0.5)	performance	for	simulations	where	the	balanced	polymorphism	is	modeled	to	achieve	feq	=	0.5	(blue),	feq	=	0.4	(orange),	feq	=	0.3	(pink),	based	on	

simulations	under	the	African	demographic	scenario	and	Tbs	=	5	Ma.	FPR,	false	positive	rate;	TPR,	true	positive	rate	(sensitivity,	or	power).		

	

	

	

	

	

3 Kb 6 Kb 12 Kb

0.5 0.4 0.3



 18 

	

	

	
Fig.	S4.	Effect	of	sequence	length	on	NCD2(0.5)	power	(Africa).	As	in	fig.	S3,	except	Tbs	=	3	Ma.		
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Fig.	S5.	Effect	of	sequence	length	on	NCD2(0.5)	power	(Europe).	As	in	fig.	S3.	
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Fig.	S6.	Effect	of	sequence	length	on	NCD2(0.5)	power	(Europe).	As	in	fig.	S5,	except	Tbs	=	3	Ma.		
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Fig.	S7.	Effect	of	sequence	length	on	NCD2(0.5)	power	(Asia).	As	in	fig.	S3.	
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Fig.	S8.	Effect	of	sequence	length	on	NCD2(0.5)	power	(Asia).	As	in	fig.	S7,	except	Tbs	=	3	Ma.		
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Fig.	S9.	Correlations	between	NCD2(tf)	calculated	with	different	tf	values.	Each	plot	shows		

the	correlation	between	NCD2	values	calculated	at	two	tf	values.	NCD2	was	calculated	for		

1,000	neutral	simulations	following	demographic	parameters	for	Africa.	L	=	3	kb.	
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Fig.	S10.	ROC	curves	for	comparison	between	NCD2	and	other	tests.	Power	to	detect	LTBS	for	simulations	where	the	balanced	polymorphism	was	modeled	

to	achieve	feq	=	0.3	(left),	feq	=	0.4	(center),	and	feq	=	0.5	(left).	Values	are	for	European	demography,	Tbs	=	5	Ma,	L	=	3	kb.	tf	for	NCD	matches	feq.	FPR,	false	

positive	rate;	TPR,	true	positive	rate.	Power	for	other	methods	is	shown	in	S1	Table.	
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Fig.	S11.	Relationship	between	NCD2(tf)	and	the	number	of	informative	sites	(IS)		

based	on	simulations.	NCD2tf	was	calculated	for	neutral	simulations	(10,000	for	each		

IS	value)	for	the	African	demographic	scenario	and	the	0.01	quantile	for	each	bin	is		

plotted.	Blue	(tf	=	0.5),	orange	(tf	=	0.4),	pink	(tf	=	0.3),	green	(tf	=	0.2).	The	dashed		

line	marks	IS	=	10.	See	also	fig.	S17.	
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Fig.	S12.	Proportion	of	windows	per	chromosome.	Significant	and	outlier	windows	are	derived	from	

the	union	of	three	tf	values	for	the	LWK	population.	Windows:	all	scanned	(grey),	significant	(green),	

outlier	(blue).		
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Fig.	S13.	Proportion	of	positions	 in	the	genome	retained	after	each	filter.	Proportion	of	 the	hg19	

human	 reference	 genome	 (total	 base-pairs	 =	 2,684,573,005)	 retained	 after	 application	 of	 each	

individual	 filter,	 and	 for	 all	 filters	 combined.	Map50	 =	 0.843;	 TRF	 =	 0.976;	 SD	 =	 0.961;	 pantro2	 =	

0.961;	Nr.IS	=	0.939;	all	=	0.799.	Map50:	mappability	50-mer;	TRF:	 tandem	repeats;	SD:	segmental	

duplications;	pantro2:	reference	chimp	genome;	Nr.IS,	excluding	windows	with	less	than	10	IS	(figs.	

S11	and	S17)	and/or	<	500	bp	of	positions	with	orthology	to	chimp	(see	Methods	in	main	text).	
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Fig.	S14.	Distribution	of	proportion	of	high	coverage	positions	per	bin	of	empirical	NCD2	p-value.	y-axis,	percentage	of	the	sequence	of	a	given	window	(of	

3	kb)	in	this	study	having	coverage	values	higher	than	the	97.5%	quantile	of	the	distribution	in	at	least	two	samples	of	modern	human	shotgun	data.	y-axis	

values	are	binned	by	the	NCD2	Ztf-IS	empirical	p-values	(Zp-value)	represented	in	–log10	scale	on	the	x-axis.	Results	for	all	tf.	
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Fig.	S15.	Number	of	paralogs	on	the	same	chromosome,	per	gene.	Proportion	of	genes	(y-axis)		

with	a	given	number	of	paralogs	on	the	same	chromosome	(x-axis).	Only	genes	with	at	least	

one	annotated	paralog	(anywhere)	were	considered.	“Genomic”	refers	to	the	scanned	genes,	

minus	the	significant	genes	from	LWK	(12,716	in	total).	“Significant_no_ORs”	refers	to	the	

union	(all	tf)	of	significant	genes	for	LWK,	minus	those	that	are	olfactory	receptors	(1,129	

and	25	in	total).	Note.	–	more	than	77%	of	significant	and	genomic	genes	have	0	or	1	paralog	

in	the	same	chromosome,	compared	to	12%	of	OR	genes.	Only	0.03%	of	the	genomic	genes	

have	more	than	40	paralogs	on	the	same	chromosome,	and	none	in	the	other	sets,	so	these	

values	are	not	shown.	
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Fig.	 S16.	 Proportion	 of	 putative	 Neandertal	 SNPs	 in	 the	 candidate	 windows	 of	 European	

populations.	 In	 gray,	distribution	obtained	 from	1,000	 re-samplings	 from	background	windows.	 In	

orange,	%	 of	Neandertal	 SNPs	within	 all	 significant	 (or	 outlier)	windows.	 TSI,	 Toscani;	 GBR,	 Great	

Britain.	Results	based	on	three	introgression	maps	(information	S3).		
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Fig.	S17.	NCD2(0.5)	empirical	values	and	number	of	 informative	sites	(violin	plots).	NCD2(0.5)	 for	

windows	with	IS	between	1-100	for	(A)	LWK	and	(B)	GBR	(>99%	of	all	scanned	windows	have	≤	100	

IS).	In	blue,	median	value	for	all	windows	within	a	given	bin.	Orange	dashed	lines	marks	IS	=	10,	after	

which	NCD2	stabilizes.	
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Fig.	S18.	Venn	diagrams	of	candidate	windows	for	four	populations.	A,	left,	significant	windows;	B,	

right,	outlier	windows;	YRI,	Yoruba;	LWK,	Luhya	(in	tones	of	purple);	GBR,	Great	Britain;	TSI,	Toscani	

(in	tones	of	green).	The	sets	of	significant	windows	come	from	the	union	of	candidate	windows	for	

all	tf	values	(table	2	in	main	text).		
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Fig.	S19.	Venn	diagrams	of	significant	windows	for	four	populations,	for	each	tf	value.	From	left	to	

right:	tf	=	0.3;	tf	=	0.4,	tf	=	0.5.	Populations	names	and	colors	as	in	fig.	S18.		

	

	

	

	
Fig.	S20.	Venn	diagrams	of	outlier	windows	for	four	populations,	for	each	tf	value.	As	in	fig.	S19.	
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Fig.	S21.	Venn	diagrams	of	outlier	genes	for	four	populations,	for	each	tf	value.	As	in	fig.	S20,	but	

for	protein-coding	genes.	
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S22	 Figure.	 Proportion	 of	 heterozygous	 sites	 per	 mappable	 base	 pair	 between	 four	 human	

populations	 and	 three	 high	 coverage	 archaic	 genomes.	 	 See	 supplementary	 Information	 S6	 for	

details.	
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Supplementary	Tables	

	

Table	 S1.	 Power	 analyses	 based	 on	 simulations.	 Power	 to	 detect	 LTBS	 for	 simulation	 following	

African,	European,	and	Asian	demographic	scenarios.	False	positive	rate	for	reported	power	values	is	

5%.	For	ß	we	analyzed	Tbs	=	3	and	Tbs	=	5,	which	are	the	timescales	we	focus	on	the	paper.	For	T1	

and	T2	we	did	not	run	all	conditions	because	it	is	computationally	expensive.	

See	attached	spreadsheet.	

Table	 S2.	 Gene	 ontology	 and	 tissue-specific	 expression	 enrichment	 analyses.	 For	 both	 types	 of	

analyses,	 four	 sets	 are	 shown	 for	 each	 population	 (LWK,	 YRI,	 GBR,	 TSI):1):	 significant	 (with	 and	

without	HLA	genes),	outlier	(with	and	without	HLA	genes).	FDR,	false	discovery	rate	(only	FDR	<	0.20	

cases	are	shown).	tf,	target	frequency.	Analysis	performed	with	GOWINDA.	

See	attached	spreadsheet.
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Table	S3.	Assigned	tf	values.	Candidate	windows	for	all	tf.	Assigned	tf	are	those	that	minimize	the	p	-	value	for	a	given	window	(information	S2).	Percentage	

of	windows	with	a	given	assigned	tf	in	relation	to	the	total	is	provided.	

		

Pop/min	

tf	 tf	=	0.3	 tf	=	0.4	 tf	=	0.5	 tf	=	0.4	or	tf	=	0.3	 tf	=	0.5	or	tf	=	0.4	 Total	

	

	 	 	 	 	 	 	

Si
gn
ifi
ca
nt
	 LWK	 1909(51%)	 770(21%)	 1027(28%)	 3(0%)	 6(0%)	 3715	

YRI	 2128(51%)	 933(22%)	 1084(26%)	 6(0%)	 5(0%)	 4156	

GBR	 1947(57%)	 745(22%)	 729(21%)	 2(0%)	 3(0%)	 3426	

TSI	 1841(54%)	 815(24%)	 737(22%)	 7(0%)	 5(0%)	 3405	

	

	 	 	 	 	 	 		

	 	 	 	 	 	 			 Pop	 tf	=	0.3	 tf	=	0.4	 tf	=	0.5	 tf	=	0.4	or	tf	=	0.3	 tf	=	0.5	or	tf=	0.4	 Total	

	 	 	 	 	 	 	 	

O
ut
lie
r		

LWK	 217(52%)	 116(28%)	 83(20%)	 1(0%)	 4(1%)	 421	

YRI	 244(55%)	 112(25%)	 80(18%)	 5(1%)	 4(1%)	 445	

GBR	 234(56%)	 132(32%)	 49(12%)	 1(0%)	 1(0%)	 417	

TSI	 193(48%)	 156(39%)	 44(11%)	 5(1%)	 5(1%)	 403	

	

Note.—	Windows	included	here	are	those	that	are	outlier	or	significant	for	all	tf	values.	Pop,	population.	Min	tf,	target	frequency	that	minimizes	NCD2	for	

windows	that	are	outlier	or	significant	for	all	tf	values.	
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Table	S4.	Candidate	genes	and	possibly	introgressed	NCD	candidates.		

Protein-coding	genes	overlapped	by	 candidate	windows	 (union	of	 all	 tf)	 in	 the	 two	

populations	from	each	continent	(Africa,	YRI	and	LWK;	Europe,	TSI	and	GBR).	African	

genes	are	ranked	by:	1)	p	 -	value	 for	LWK;	2)	p	 -	value	 for	TSI;	European	genes	are	

ranked	by:	1)	p	-	value	for	GBR;	2)	p	-	value	for	TSI.	“shared”	genes	are	ranked	by	p	-	

values	in:	LWK,	YRI,	GBR,	TSI.	The	reported	p	-	value	is	always	the	lowest	one	among	

all	windows	overlapping	a	given	gene	and	the	tf	values	is	the	one	that	minimizes	the	

p	 -	 value	 (information	 S2).	 Possibly	 introgressed	 candidate	 genes:	 European	

candidate	 windows	 not	 shared	 with	 any	 African	 population,	 with	 proportion	 of	

introgressed	SNPs	≥	0.25	and	the	median	MAF	of	introgressed	SNPs	≥	0.2.	Reported	

genes	 are	 overlapped	 by	 candidate	 (outlier	 or	 significant	 windows)	 and	 by	 a	

Neandertal	haplotype.	See	information	S3.	

See	attached	spreadsheet.	

	

Table	S5.	Bedfiles	and	SNP	enrichment	analyses.	Bedfiles:	These	correspond	to	the	

four	populations	(LWK,	YRI,	GBR,	TSI),	three	target	frequencies	(0.3,	0.4,	0.5)	and	two	

sets	 (significant	 and	 outliers)	 of	 windows.	 Columns	 correspond	 to:	 chromosome,	

beginning	 of	 window,	 end	 of	 window.	 Coordinates	 based	 on	 hg19.Windows	 are	

ordered	 by	 position.	 Enrichment	 analyses:	 p-values	 obtained	 from	 1,000	 re-

samplings	from	background	windows,	and	for	a	one-tailed	test	where	the	alternative	

hypothesis	 is	 of	 enrichment	 in	 the	 candidate	 windows.	 Intermediate	 frequencies,	

only	SNPs	with	MAF	≥	0.20	are	considered.	

See	attached	spreadsheet.	
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