Supporting material: Linkage disequilibrium under genetic hitchhiking in finite populations

P. Pfaffelhuber,* A. Lehnert ${ }^{\dagger}$ W. Stephan ${ }^{\dagger}$

February 24, 2008

Numerical comparison of $\mathbb{E}\left[\widehat{r^{2}}\right]$ and $\widehat{\sigma_{D}^{2}}$

In Hudson (1985), a heuristics concerning the connection between $\mathbb{E}\left[\widehat{r^{2}}\right]$ and $\widehat{\sigma_{D}^{2}}$ was established under neutrality: if we ignore variants which occur in low frequency, both measures should be approximately the same. In Figure 1 this connection is established using numerical results for the case of a population at the end of a selective sweep. We see that $\mathbb{E}\left[r^{2}\right]$ and σ_{D}^{2} show the same pattern.

Comparison of simulations and analytical results for various α

Complementing Figure 8 of the main text we simulated selective sweeps for several values of the selection strength α. We show comparison results to (10) and (12) in the main text for 500, 1000 and 2000 in Figures 2, 3 (same as Figure 8 in the main text) and 4 , respectively. In Subfigures (A), we fix $\rho_{L R} / \alpha=0.05$ while in Subfigures (B), we always have $\rho_{L R} / \alpha=0.5$.

[^0]

Figure 1: The measures (A) $\mathbb{E}\left[r^{2}\right]$ and (B) σ^{2} at the end of a selective sweep in a sample of size $n=50$. In both figures, variants which occur in less than 5% were ignored.

Figure 2: Comparison of simulations and prediction using the star-like approximation from (10) and (12) for $\alpha=500$. The neutral loci in the simulation fall in windows which are (A) 0.2 kb (B) 2 kb apart. Every curve is based on 10^{3} simulations.

Figure 3: Same as Figure 8 in the main text

Comparison of simulations and analytical results for various sample sizes

Complementing Figure 8 of the main text we simulated selective sweeps for various sample sizes n. We show comparison results to (10) and (12) in the main text for $n=10,20,50$ in Figures 5, 6 (same as Figure 8 in the main text) and 7 , respectively.

The decay of linkage disequilibrium after the sweep

After the selective sweep, linkage disequilibrium decays rapidly and reaches neutral levels. In Figure 8 we present simulation results complementing Figure 9 of the main text. We see that linkage disequilibrium decays fastest directly after the selective sweep.

Figure 4: Comparison of simulations and prediction using the star-like approximation from (10) and (12) for $\alpha=2000$. The neutral loci in the simulation fall in windows which are (A) 0.4 kb (B) 4 kb apart. Every curve is based on 10^{3} simulations.

Figure 5: Comparison of simulations and prediction using the star-like approximation from (10) and (12) for $n=10$. The neutral loci in the simulation fall in windows which are (A) 0.2 kb (B) 2 kb apart. Every curve is based on 10^{3} simulations.

Figure 6: Same as Figure 8 in the main text, i.e., same as Figure 5 for $n=20$.

Figure 7: Same as Figure 5 for $n=50$.

Figure 8: The pattern of linkage disequilibrium at different time-points after the selective sweep. The $t=T$-curve gives standardized linkage disequilibrium at the time of fixation of the beneficial allele. The $t=T+0.05 \mathrm{~N}$ and $t=T+0.1 N$-curves describe the pattern at the time 0.05 N and 0.1 N generations afterwards, respectively. Both neutral loci are (A) 0.2 kb (B) 2 kb apart. Every curve is based on 10^{3} simulations of the $10-\mathrm{kb}$ fragment.

References

Hudson, R. R., 1985 The sampling distribution of linkage disequilibrium under an infinite allele model without selection. Genetics 109: 611-631.

[^0]: *University of Vienna, Department of Mathematics, Nordbergstraße 15, 1090 Vienna, Austria
 ${ }^{\dagger}$ Ludwig-Maximilians University, Biocenter, Großhaderner Straße 2, 82152 Planegg, Germany.

