GENETICS

Supporting Information http://www.genetics.org/cgi/content/full/genetics.109.107904/DC1

Excision of an Active CACTA-Like Transposable Element From *DFR2* Causes Variegated Flowers in Soybean [*Glycine max* (L.) Merr.]

> Min Xu, Hargeet K. Brar, Sehiza Grosic, Reid G. Palmer and Madan K. Bhattacharyya

Copyright © 2009 by the Genetics Society of America DOI: 10.1534/genetics.109.107904

FIGURE S1.—Anthocyanin biosynthesis pathway involved in flower color development.CHS, Chalcone Synthase; CHI, Chalcone Isomerase; F3H, Flavanone 3-Hydroxylase; F3'5'H, Flavonoid 3'5'-Hydroxylase; F3'H, Flavonoid 3'-Hydroxylase; DFR, Dihydroflavonol-4-Reductase; ANS, Anthocyanidin Synthase; 3GT, 3- Glucose Transferase; FLS, Flavonol Synthase

FIGURE S2.—Absorption spectra of anthocyanins extracted from immature flowers of the cultivar Harosoy. (A) Absorption spectrum of anthocyanin extracts in methanol-HCl, the absorption peak is at 535 nm. (B) Absorption spectrum of anthocyanin aglycones hydrolyzed by boiling 30 minutes, the absorption peak shifted 8 nm to 543 nm.

DFR2		MGSSSASESVCVTGASGFIGSWLVMRLIERGYTVRATVRDPANMKKVKHLVELPGAKTKL	60
DFR1		MGSASESVCVTGASGFIGSWLVMRLIERGYTVRATVRDPVNMKKVKHLVELPGAKSKL	58
		** ************************************	
DFR2		SLWKADLAQEGSFDEAIKGCTGVFHVATPMDFDSKDPENEVIKPTINGLLDIMKACVKAK	120
DFR1		SLWKADLAEEGSFDEAIKGCTGVFHVATPMDFESKDPENEVIKPTINGVLDIMKACLKAK	118

DFR2		TVRRLVFTSSAGTVDVTEHPNPVIDENCWSDVDFCTRVKMTGWMYFVSKTLAEQEAWKYA	180
DFR1		TVRRLIFTSSAGTLNVIERQKPVFDDTCWSDVEFCRRVKMTGWMYFVSKTLAEKEAWKFA	178

DFR2		KEHNIDFISVIPPLVVGPFLMPTMPPSLITALSLITGNESHYHIIKQGQFVHLDDLCLGH	240
DFR1		KEQGLDFITIIPPLVVGPFLMPTMPPSLITALSPITGNEDHYSIIKQGQFVHLDDLCLAH	238
		:.:*::*****************************	
DFR2		IFVFENPKAEGRYICCSHEATIHDIAKLLNQKYPEYNVLTKFKNIPDELDIIKFSSKKIT	300
DFR1		IFLFEEPEVEGRYICSACDATIHDIAKLINQKYPEYKVPTKFKNIPDQLELVRFSSKKIT	298
		::*:*****: :*******:***************	
DFR2		DLGFKFKYSLEDMFTGAVETCREKGLLPKPEETTVNNELLPKPAETTVNDTMQK 354	
DFR1		DLGFKFKYSLEDMYTGAIDTCRDKGLLPKPAEKGLFTKPGETPVN-AMHK 347	
	?	***************************************	

FIGURE S3.—Alignment of DFR1 with DFR2. "*" represents identical residues; ":" means conserved substitutions between similar residues; "." indicates the semi-conserved substitutions between similar residues.

FIGURE S4.—PCR and sequencing strategies in obtaining a missing sequence of Tgm9. (A) Diagrammatic presentation of plaques 16 and 25 that were used to obtain most part of the Tgm9 sequence. (B) Long-range (LR) PCR using primers DFR26S (5'- CAAGGACCCTGAGGTATGT-TGATCAT-3') and 25 T7-R13 (5'- CCCACACAAACGTATTTCTCGAAC-3') was applied to amplify the fragments including DFR2 intron II and part of Tgm9 as shown in (A). (C) Sub-PCR of the LR PCR products (shown by arrows in B). Sub-PCR product obtained by using primers 16-2-R10 (5'- GGGTTCTGGCGCTTCCAGTGAAG-3') and 25T7-R13 was used to obtain the sequence of the gap region shown by a black star in (A).

FIGURE S5.—Unique footprints left behind by Tgm9 during germinal reversion. Germinal revertants from nine families identified in Figure 7a and two intermediate germinal revertants T321 (w4-dp) and T369 (w4-p) were selected for determining foot prints left behind by Tgm9 in DFR2 intron II through PCR by compare to the wild-type DFR2 (WT) from cv. Williams 82. Nucleotides representing the target site duplication are underlined. Footprint nucleotides left by Tgm9 germinal excision are in bold font.

A		Tgm9	ATG
		DFRF	DFRR
в	T322 T369 T321	ATAGCACATGTTTTCNTATTAATATTTT ATAGCACATGTTTTCATATTAATATTTT ATAGCACATGTTTTCATATTAATATATTTT *************	TAAAATGTTAATTAAAATAGATTTTTCAAATA 60 TAAAATGTTAANTAAAATAGATTTTTTCAAATA 60 TAAAATGTTAAATTAAATAAATAGATTTTTTCAAATA 60
	T322 T369 T321	TTTCATTTATCAGTATGAATGTATTTTT TTTCATTTATCAGTATGAATGTATTTTTT TTTCATTTATCAGTATGAATGTATTTTTT *********************	CTTAAAAAACCTTAATGAGTCATCTGTATGCAT 120 CTTAAAAACCTTAATGAGTCATCTGTATGCAN 120 CTTAAAAAACCTTAATGAGTCATCTGTATGCAT 120
	T322 T369 T321	GACACCATATTAGTTTTTTATAAAAAAA GACACCATATTAGTTTTTTTATAAAAAAA GACACCATATTAGTTTTTTTATAAAAAAA *******	AAAATCAATAAGCTAGTATCTTATCCTTTACC 180 AAAATCAATAAGCTAGTATCTTATCCTTTACC 180 AAAATCAATAAGCTAGTATCTTATCCTTTACC 180
	T322 T369 T321	ATCTACAAGATAATTTTGTTTTATTAAA ATCTACAAGATAATTTTGTTTTATTTAAA ATCTACAAGATAATTTTGTTTTTATTTAAA **********	СТАААТСТАТААТАААТААТАТТТТТТТТААС 240 СТАААТСТАТААТАААТАААТАТТТТТТТТААС 240 СТАААТСТАТААТАААТААТАТТТТТТТТААС 240
	T322 T369 T321	ATATAAATTATGTTATAATTAAAATTTC ATATAAATTATGTTATAATTAAAATTTC ATATAAATTATGTTATAAATTAAAATTAC *******	ГААТАААТАААТААТТТТТТТТАТАТАТАААТТАТ 300 ГААТАААТАААТААТТТТТТТАТАТАТАААТТАТ 300 ГААТАААТАААТААТТТТТТТТАТАТАТАААТТАТ 300
	T322 T369 T321	ANTGAAATTTATTACAAAAACTATTTCG ATTGAAATTTATTACAAAAACTATTTCG ATTGAAATTTATTACAAAAACTATTTCG * ******	RGATAATAAAATTACTTTTAATTAATTGATACT 360 RGATAATAAAATTACTTTTAATTATTGATACT 360 RGATAATAAAATTACTTTTTAATTATTGATACT 360
	T322 T369 T321	СТТТТААААААТАТААААААТТАААТТС СТТТТААААААТАТААААААТТАААТТС/ СТТТТААААААТАТААААААТТАААТТ	AAAAATAAAAATGAAAATAATAGATTTAATAA 420 AAAAATAAAAATGAAAATAATAGATTTAATAA 420 AAAAATAAAAATGAAAATAATAGATTTAATAA 420
	T322 T369 T321	GATAAGAGGTCAATAAAAATTTCTAAAA GATAAGAGGTCAATAAAAATTTCTAAAA AATAAGAGGTCAATAAAAATTTCTAAAA ***********	АСССТТТСАТТСААЛААЛАТАЛАТТСТАЛАЛАЛА 480 АСССТТТСАТТСАЛАЛАЛАТАЛАТТСТАЛАЛАЛА 480 АСССТТТСТТТСАЛАЛАЛАТАЛАТТСТАЛАЛАЛА 480
	T322 T369 T321	ACACATTCAAAAAGAAATTCTAAAAGAA ACACATTCAAAAAGAAATTCTAAAAGAA ACACATTCAAAAAGAAATTCTAAAAGAA ******	AAGAGAAATAGGTATTATATATTTAATTTACT 540 AAGAGAAATAGGTATTATATATATTTAATTTACT 540 AAGAGAAATAGGTATTATATATATTTAATTTACT 540
	T322 T369 T321	ATCAAAAAATCTTTTGAAAATTTAAACT ATCAAAAAATCTTTTGAAAATTTAAACT ATCAAAAAATCTTTTGAAAATTTAAACT ***********	CTTGTTATATTAGTCTTTACAGAAGGCTAATG 600 CTTGTTATATTAGTCTTTACAGAAGGCTAATG 600 CTTGTTATATTAGTCTTTACAGAAGGCTAATG 600
	T322 T369 T321	TAATGCTATAATTGTAATATATATAAATT TAATGCTATAATTGTAATATATTATAAATT TAATGCTATAATTGTAATATATTAAATTY **********	ACTGACAAAAAATTTAAAATATTAGTATCATA 660 ACTGACAAAAAAATTTAAAATATTAGTATCATA 660 ACTGACAAAAAAATTTAAAATATTAGTATCATA 660
	T322 T369 T321	CACTTAAAGAGACATATTTAAAATCAAA CACTTAAAGAGACATATTTAAAATCAAA CACTTAAAGAGACATATTTAAAATCAAA **********************	RGAATTTAGTTTGATTAGTTAAACATATAATG 720 RGAATTTAGTTTGATTAGTTAAACATATAATG 720 RGAATTTAGTTTGATTAGTTAAACATATAATG 720
	T322 T369 T321	TATATAATTTAAGAGTATTATAAATCTT TATATAATTTAAGAGTATTATAAATCTT TATATAATTTAAGAGTATTATAAATCTT *******	TTAATAATGTGTTGAATTCTTACCAATAAACA 780 TTAATAATGTGTTGAATTCTTACCAATAAACA 780 TTAATAATGTGTTGAATTCTTACCAATAAACA 780
	T322 T369 T321	ATAAAAAGGATATTAAAAGCTCA 803 ATAAAAAGGATATTAAAAGCTCA 803 ATAAAAAGGATATTAAAAGCTCA 803	

А

FIGURE S6. —Promoters of w4-dp (T321) and w4-p (T369) alleles were intact following insertion of Tgm9. (A) Schematic representation of the promoter region amplified by PCR is shown. Inverted triangle showed the Tgm9 insertion site. (B) PCR amplified promoter sequences of parental line T322 (w4-m) and two stable mutants w4-dp (T321) and w4-p (T369) are compared. Primer DFRF, CCTATGCCATGTGAGAATAAAGCAG; Primer DFRR, CCGTATGAAGTGGGTGCTTTTATAG.

FIGURE S7.—Schematic representation of Tgm10. Tgm10 is located at the 3' end of Scaffold_57. Except for a ~4100bp deletion in 5' end, a gap in 5'end, and a 1049 bp insertion flanked with a 7 bp direct repeat in exon XXIII, Tgm10 is 99% identical to Tgm9 element.

Primers used in this study

Primera	Sequence
ANS1S	5'-ATGCACTTGGTGAACCATGG-3'
DFR1S	5'-ATCTTGCTGAAGAGGGAAGC-3'
DFR2S	5'-ACAACGAGAGAGAGAACATG-3'
DFR3S	5'-AGCCTACAATAAACGGATTG-3'
DFR4S	5'-CCCGTTCTTCTATCTTTTTCTG-3'
Tn3'18	5'-GGTTGCAGGAGAAAACCGTCTTAGTATGTC-3'
Tn3'28	5'-CGGTTTTCGTAACAATCGTC-3'
P1	5'CCCAATCCAAGCTGCGACCTTCAAAG-3'
P3	5'-GGACGAGCCTTTCATCATGGCAGCAC-3'
ANS1R	5'-AATGCTCTTGTACTTGCCGTTG-3'
DFR1R	5'-TGTACATGTCCTCTAAGCTG-3'
DFR2R	5'-TCCCTCTTGAGCAAGATCAG-3'
DFR3R	5'-ATGATATGGTAATGGGACTC-3'
DFR4R	5'-GGACAAAGACAATGCAGGTCCACATCGAAG-3'
Tn3'1R	5'-GACATTCATGTATTCACTAGTACAAATAAAG-3'
P2	5'-CGCCAGAACCCACTTTGTAGCGTGAC-3'
P4	5'-GCTCCCATGTTTGCTGCTCCATACCA-3'
P5	5'-CTGATGCAAGTATGCTCCTAAGTAC-3'

^{*a*} Primers used for sequencing the element are not listed here. ANS1F and ANS1R were designed from a partial coding sequence of an *ANS* gene identified from soybean seed coats (AF325853). DFR1F and DFR1R were designed according to the consensus sequence of three legume *DFR* genes (AF167556 from *G. max*; AF117263 from *Lotus corniculatus*; and AY389346 from *Medicago truncatula*).

Probes used in this study

Probe ^a	Description
ANS partial cDNA	cDNA fragment amplified from purple petals of T322 using ANS1F and ANS1R primers.
F3H	An $F\!3H\mathrm{EST}$ clone (BM093886) provided by Dr. R. C. Shoemaker (Ames, IA)
DFR2 partial cDNA	cDNA fragment amplified from petals of T322 using DFR1F and DFR1R primers.
DFR 5'	cDNA fragment amplified from petals of T322 using DFR2S and DFR2R primers.
DFR3'	cDNA fragment amplified from petals of T322 using DFR3S and DFR3R primers.
<i>Tgm9</i> 3' end	PCR fragment amplified using primers TN3'2S and TN3'1R from a lambda clone containing the <i>w4-m</i> allele, isolated from the 1st T322 lambda genomic library.

" All the probes were labeled with α -³²P-dATP using Primer-it II randomly labeling kit (Stratagene, La Jolla, CA).

Polymorphic sequences between Tgm9 and Tgmt*

Nucleotide position in Tgm9		Nucleotide in Tgm9	Nucleotide in <i>Tgmt*</i> ^a
293	(5' STR Exon 1)	Т	Y
746	(Intron 1)	С	Y
920	(Intron 2)	С	Y
1645	(Intron 2)	Т	С
2043	(Intron 2)	Т	С
2192	(Intron 2)	Т	А
2146	(Intron 2)	Т	С
2923	(Intron 2)	Т	-
4969	(Intron 3)	А	G
5129	(Intron 3)	Т	С
5272	(Intron 3)	Т	-
5715	(Intron 3)	Т	С
5851	(Intron 3)	Т	-
5863	(Intron 3)	Т	-
5999	(Intron 3)	Т	С
6651	(Exon 4)	А	G
6819	(Exon 4)	С	Y
8010	(Exon 4)	G	R
8019	(Exon 4)	С	Y
8078	(Exon 4)	С	Y
13359	(Intron 16)	Т	С
13524	(Exon 17)	А	G
13616	(Exon 17)	А	G
13904	(Exon 18)	G	А
15519	(Intron 21)	Т	С
17169	(Exon25)	А	G

a "- "represents nucleotide missing

Transposon	3' TIR <i>a</i>	Identity to Tgm9
Tgm9	5'-CACTACTACAAATAAAGCTTTTTAAGTCGG-3'	100%
Tgmt*	5'-CACTACTACAAATAAAGCTTTTTAAGTCGG-3'	100%
Tgm-express 1	5'-CACTACTACAAAAAGAGGTTTTTTTAAGTCGG-3'	87%
Tgm1	5'-CACTATTACAAAAAGTAGTTTTAACATCGG-3'	70%
Tgm6	5'-CACTACTACAAAAAGCAGTTTTAACATCGA-3'	70%

Comparison of 3' terminal inverted repeats among soybean transposable elements

^{*a*} Nucleotides in bold are identical to the ones in Tgm9 3'TIR.