6 SI A. Garavito et al.

FILE S3

Equations for calculating the expected gametic and allelic frequencies under Model 1

The expected frequencies F_c of the different 1n-2c configurations can be derived from the recombination frequencies between the three S_I genes and between the S_I complex locus and the centromere (see schematic representation 1 below), and are given in Table S3-1.

The expected frequencies of each gamete that belong to a specific 1n-2c configuration are equal to $F_c/4$, where F_c is the expected frequency of the specific 1n-2c configuration.

Let D be the sum of the frequencies of the viable gametes. Under model 1, D simplifies to:

$$D = (1 - 2r_5)\left(\frac{r_2 + 1}{2}\right) + 2r_5\left[\frac{1}{2} + \frac{r_1}{2} - r_1r_2\right]$$

The expected frequencies of viable gametes are obtained by dividing their corresponding expected frequency by D.

Thus, the final frequency of gametes bearing the S_1^s allele, $f(S_1^s)$, is obtained by summing the individual frequencies of viable gamete that bear this allele. Under Model 1, this simplifies to:

$$f(S_1^s) = \left[\frac{r_2}{2} + r_5(r_1 - r_2 - 2r_1r_2)\right]/D$$

Similar equations can be derived for Models 2 to 4, with numerical examples based on observed data given in File "S1 - Genetic models.xlsx".

Under all models, the estimated for recombination fractions r_1 and r_2 are naturally given by dividing the observed recombination fractions, r_1 max and r_2 max, by 2D.

$$\hat{r}_1 = \frac{r_1 \max}{2D}; \ \hat{r}_2 = \frac{r_2 \max}{2D}.$$

In the case of the presence of the additional factor S_IC (see schematic representation 2 below), the effect of S_IC is applied after the initial selection due to the S_IA - S_I - S_IB locus action.

As S_IC only affects the S_I^s gametes when a recombination event occurs between S_IB and S_IC , the expected frequencies of these gametes are obtained by multiplying them by $1 - r_3$, where r_3 is the recombination fraction between S_IB and S_IC , and dividing them by the relative sum of all gamete frequencies, $1 - r_3 f(S_1^s)$. The frequencies of other viable gametes are obtained by dividing them by the relative sum of all gamete frequencies, $1 - r_3 f(S_1^s)$.

A. Garavito et al. 7 SI

TABLE S3-1 Expected frequencies F_c of the different 1n-2c configuration expressed in function of the recombination frequencies between the three S_I genes, and associated gametic frequencies under no selection and Model 1 selection

In-2c configuration S ₁ A S ₁ S ₁ B	Expected configuration frequency without selection (F_c)	Expected gamete frequency without selection (F_g)	Survival under Model 1	Expected gamete frequency under selection (Model 1)
$ \begin{array}{c cccc} S_1A & S_1 & S_1B \\ \hline s & s & s \\ s & s & s \end{array} $	$F_c^{1} = (1 - 2r_5) [1 - 2(r_1 + r_2 - 2r_1r_2)]$	$F_c^{-1}/4 F_c^{-1}/4$	Aborted Aborted	
g g g g g g g	, -/ _L (1 - 1 - 1/ ₂)	$\frac{F_c^{\ 1}/4}{F_c^{\ 1}/4}$	Viable Viable	$rac{F_g/D}{F_g/D}$
s s s g g g	$F_c^2 = 2r_5 \Big[1 - 2(r_1 + r_2 - 2r_1r_2) \Big]$	$F_c^2/4$ $F_c^2/4$	Aborted Viable	F_g/D
s s s g g g		$F_c^2/4$ $F_c^2/4$	Aborted Viable	F_g/D
s s s g g s X	$F_c^3 = 2r_2(1 - 2r_1)(1 - 2r_5)$	$\frac{F_c^3/4}{F_c^3/4}$	Viable Viable	$rac{F_g/D}{F_g/D}$
s s g g g g		$\frac{F_c^3}{4}$	Aborted Viable	F_g/D
s s s g s s X	$F_c^4 = 2r_1(1 - 2r_2)(1 - 2r_5)$	$F_c^4/4$ $F_c^4/4$	Aborted Aborted	0
s g g g g g		$F_c^4/4$ $F_c^4/4$	Viable Viable	$rac{F_g/D}{F_g/D}$
s s s s s s x X X	$F_c^{5} = 4r_1r_2(1 - 2r_5)$	$F_c^5/4$ $F_c^5/4$	Viable Viable	$rac{F_g/D}{F_g/D}$
g s g g g g		$F_c^5/4$ $F_c^5/4$	Aborted Viable	F_g/D

8 SI A. Garavito et al.

s s s	1	$F_{c}^{6}/4$	Aborted 0	
s s g		$F_c^6/4$	Aborted 0	
Χ	$F_c^6 = 4r_2r_5(1-2r_1)$			
g g s		$F_c^6/4$		F_g/D
g g g	」)	$F_{c}^{6}/4$	Viable I	F_g/D
s s s	٦	$F_c^{7}/4$	Viable I	F_g/D
s g g		$\frac{F_c}{f_c}$ /4		F_{g}/D
X	$\int_{c}^{7} F_{c}^{7} = 4r_{1}r_{5}(1-2r_{2})$	· c / ¬		81
g s s		$F_c^{7}/4$	Aborted 0	
ggg		$F_c^{7}/4$		F_g/D
	-/ -\	0.7		
S S S		$F_c^{8}/4$	Aborted 0	
g s g		$F_c^{8}/4$	Aborted 0	
ХХ	$F_c^8 = 8r_1r_2r_5$			
s g s		$F_c^{8}/4$		F_g/D
g g g	J)	$F_{c}^{8}/4$	Viable I	F_g/D

The sum of the frequencies of the viable gametes thus simplifies to:

$$D' = D/(1 - f(S_1^s))r_3$$

while the final frequency of gametes bearing the $\boldsymbol{S_1}^s$ allele converts to:

$$f'(S_1^s) = (1 - r_3) f(S_1^s) / (1 - f(S_1^s) r_3)$$

and the estimates for r_1 and r_2 convert to:

$$\hat{r}_1 = \frac{r_1 \max}{2D'}; \ \hat{r}_2 = \frac{r_2 \max}{2D'}.$$

A. Garavito et al. 9 SI

Schematic representation 1: positions of the three S_I genes on rice chromosome 6, expressed as recombination franctions between each other and between the S_I locus and the centromere.

Schematic representation 2: positions of the three S_I genes and the S_IC gene on rice chromosome 6, expressed as recombination fractions between each other and between the S_I locus and the centromere.

