GENETICS

Supporting Information http://www.genetics.org/cgi/content/full/genetics.110.118315/DC1

Comparative Transcriptome Analysis of the CO₂ Sensing Pathway Via Differential Expression of Carbonic Anhydrase in *Cryptococcus neoformans*

Min Su Kim, Young-Joon Ko, Shinae Maeng, Anna Floyd, Joseph Heitman and Yong-Sun Bahn

> Copyright © 2010 by the Genetics Society of America DOI: 10.1534/genetics.110.118315

FIGURE S1.—Deletion of the CAS3 gene. (A) The overlap PCR transformation strategy for disruption of the CAS3 gene. Primers for overlap PCR and diagnostic PCR are indicated as bent arrows. (D) Southern hybridization was performed to verify positive $cas3\Delta$ mutants.

FIGURE S2.—Transcript levels of *ATF1* by overexpression or suppression of *CAN2* expression. Northern blot (top panel) and quantitative RT-PCR (qRT-PCR, bottom panel) show transcript levels of *ATF1* in the wild-type and the P_{CTR4} ::*CAN2* strains grown in YNB+BCS medium (left panel) or the P_{CTR4} ::*CAN2* grown in YNB+BCS and YNB+CuSO4 medium. For qRT-PCR, data obtained from three independent biological replicates with three technical replicates were normalized by using *ACT1* as a control. Relative gene expression indicates normalized *ATF1* expression levels to those of the wild-type strain (left panel) or the P_{CTR4} ::*CAN2* strain in YNB+BCS medium (right panel).

FIGURE S3.—Deletion of the ATF1 gene. (A) The NAT split-marker transformation strategy for disruption of the ATF1 gene. Primers for the double-joint PCR and diagnostic PCR are indicated as bent arrows. (D) Southern hybridization was performed to verify positive $atf1\Delta$ mutants.

FIGURE S4.—The role of Atf1 in osmotic and genotoxic stress response. Each *C. neoformans* strain (the wild-type H99 strain and *hog1* Δ [YSB64], *ssk1* Δ [YSB64], *skn7* Δ [YSB349], *atf1* Δ [YSB676, YSB678, and YSB679] mutant strains) was grown overnight at 30°C in liquid YPD medium, 10-fold serially diluted (1–10⁴ dilutions), and spotted (3 µl of dilution) on YPD agar containing the indicated concentrations of NaCl, KCl, sorbitol, methylmethane sulfonate (MMS), and hydroxyurea (HU). Cells were incubated at 30°C for 72 h and photographed.

C. neoformans strains and primers used in this study

Strain	Genotype	Parent	Reference
H99	ΜΑΤα		(Perfect et al., 1993)
H99-Eunich	ΜΑΤα	H99	
BE7-151	MATa atf1A::HYG	H99-Eunich	
YSB64	MATa hog1A::NAT-STM#177	H99	(Bahn et al., 2005)
YSB261	MATa ssk1A::NAT-STM#205	H99	(Bahn et al., 2006)
YSB349	MATa skn7A::NAT-STM#201	H99	(Bahn et al., 2006)
YSB733	MATa P _{CTR4} ::CAN2	H99	This study
YSB734	MATa P _{CTR4} ::CAN2	H99	This study
YSB735	MATa P _{CTR4} ::CAN2	H99	This study
YSB667	MATa cas3A::NAT-STM#122	H99	This study
YSB668	MATa cas3A::NAT-STM#122	H99	This study
YSB669	MATa cas3A::NAT-STM#122	H99	This study
YSB676	MATa atf1A::NAT-STM#220	H99	This study
YSB678	MATa atf1A::NAT-STM#220	H99	This study
YSB679	MATa atf1A::NAT-STM#220	H99	This study

Primer Name	Sequence	Comment
B79	TGTGGATGCTGGCGGAGGATA	ACT1 promoter screening oligo
B93	CTATGCTGTAATGACTGAGCC	CAN2 CR2
B354	GCATGCAGGATTCGAGTG	NAT/CTR Left
B355	GATTGGTGAAGTCGTTGTCG	NAT/CTR Right
B356	CATTTCGCTTGCCATAAGTG	CAN2 CSO1
B357	CACCTTCTTGATTGTAGGGG	CAN2 CL1
B358	CACTCGAATCCTGCATGCAAACCCCAACCAACCCCGATTG	CAN2 CL2
B359	CGACAACGACTTCACCAATCATGCCTTTCCACGCTGAACC	CAN2 CR1
B1026	GTAAAACGACGGCCAGTGAGC	M13F extended
B1027	CAGGAAACAGCTATGACCATG	M13R extended
B1243	GAGTAGAGGAGTGGATTGGG	ATF1-L1 for the left flanking region
B1244	<u>GCTCACTGGCCGTCGTTTTAC</u> CCATTGTTCAAGCAGAGC	ATF1 L2 for the left flanking region
B1245	<u>CATGGTCATAGCTGTTTCCTG</u> GGCTTACTGCTATCTTGATGC	ATF1 R1 for the right flanking
		region
B1246	GAAAGAGGAACTACATACTGGGTC	ATF1 R2 for the right flanking
		region
B1247	GTCTTTTGCTCCTTGAAACC	ATF1 screening oligo paired with
		B79
B1377	ATTGATTCCAGCAGACCCC	ATF1 southern probe paired with
		B1780

B1454	AAGGTGTTCCCCGACGACGAATCG	NAT Split marker Right (NSR)
B1455	AACTCCGTCGCGAGCCCCATCAAC	NAT Split Marker Left (NSL)
B1780	ACCAGGTGTAAACCCAGTCC	ATF1 southern probe paired with
		B1377
B1817	AAAACCTGGGCGGAACACAG	CAS3 screening oligo paired with
		B79
B1818	CGTCGGACATTCATCAATCTAC	CAS3 L1 for the left flanking region
B1819	<u>GCTCACTGGCCGTCGTTTTAC</u> TTGGCAGGAAGAGAGTTATG	CAS3 L2 for the left flanking region
B1820	CATGGTCATAGCTGTTTCCTGGCATAGTGTGGCTGACTTTAG	CAS3 R1 for the right flanking
		region
B1821	ATGGTCCCACTGCTCACTATCC	CAS3 R2 for the right flanking
		region
B1829	CCGAAGCCTTTTGTGACTAC	CAS3 southern probe oligo

Each $\it N\!AT\text{-}STM\#$ indicates the Natr marker with a unique signature tag.

References for Table S1

Bahn, Y.S., Geunes-Boyer, S., and Heitman, J. (2007). Ssk2 mitogen-activated protein kinase kinase kinase governs divergent patterns of the stress-activated Hog1 signaling pathway in *Cryptococcus neoformans*. Eukaryot. Cell *6*, 2278-2289.

Bahn, Y.S., Hicks, J.K., Giles, S.S., Cox, G.M., and Heitman, J. (2004). Adenylyl cyclase-associated protein Aca1 regulates virulence and differentiation of *Cryptococcus neoformans* via the cyclic AMP-protein kinase A cascade. Eukaryot. Cell *3*, 1476-1491.

Bahn, Y.S., Kojima, K., Cox, G.M., and Heitman, J. (2005). Specialization of the HOG pathway and its impact on differentiation and virulence of *Cryptococcus neoformans*. Mol. Biol. Cell 16, 2285-2300.

Bahn, Y.S., Kojima, K., Cox, G.M., and Heitman, J. (2006). A unique fungal two-component system regulates stress responses, drug sensitivity, sexual development, and virulence of *Cryptococcus neoformans*. Mol. Biol. Cell 17, 3122-3135.

Idnurm, A., Walton, F.J., Floyd, A., Reedy, J.L., and Heitman, J. (2009). Identification of *ENA1* as a virulence gene of the human pathogenic fungus *Cryptococcus neoformans* through signature-tagged insertional mutagenesis. Eukaryot Cell *8*, 315-326.

Kwon-Chung, K.J., Edman, J.C., and Wickes, B.L. (1992). Genetic association of mating types and virulence in *Cryptococcus neoformans*. Infect. Immun. *60*, 602-605. Liu, O.W., Chun, C.D., Chow, E.D., Chen, C., Madhani, H.D., and Noble, S.M. (2008).

Systematic genetic analysis of virulence in the human fungal pathogen *Cryptococcus neoformans*. Cell 135, 174-188. Perfect, J.R., Ketabchi, N., Cox, G.M., Ingram, C.W., and Beiser, C.L. (1993).

Karyotyping of Cryptococcus neoformans as an epidemiological tool. J. Clin. Microbiol. 31, 3305-3309.

Microarray data generated by this study

Table S2 is available for download as an Excel file at http://www.genetics.org/cgi/content/full/genetics.110.118315/DC1.

$Genes\ regulated\ by\ differential\ expression\ of\ CAN2\ in\ the\ CAN2\ promoter\ replacement\ strain\ growing\ in$

either BCS or Copper-containing medium

Table S3 is available for download as a Word (.doc) file at http://www.genetics.org/cgi/content/full/genetics.110.118315/DC1.

Genes regulated by differential expression of CAN2 between the wild-type strain and the CAN2 promoter

replacement strain growing in BCS-containing medium

Table S4 is available for download as a Word (.doc) file at http://www.genetics.org/cgi/content/full/genetics.110.118315/DC1.

List of Can2-dependent genes in C. neoformans

Table S5 is available for download as a Word (.doc) file at http://www.genetics.org/cgi/content/full/genetics.110.118315/DC1.