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FILE S1
Corrections for pooled sampling

The nature of our experimental design creates additional noise that we must correct for
in our population genetic estimates. In particular, the pooled DNA sequencing design of
this manuscript creates a second level of binomial sampling, beyond what is associated
with the “normal” population genetic survey. Throughout we assume that a sample of
size n chromosomes is taken from nature and pooled for sequencing. This sequencing
is performed to depth m which may be variable among loci/sites. Conditioning on a
population frequency of the A, allele p, the probability of sampling 7 out of n A; alleles in
our initial sample is simply binomial with parameters n and p. Thus the expected value
of the sample frequency E(i/n) = p and the second moment is E((i/n)?) = 22 4 p2,

We will first derive similar results for the pooled sampling design, and then move on
to estimation of population genetic statistics. The probability of sampling k A, alleles
out of m in our pooled sequences conditional upon having sampled 7 out of n in our initial
sampling is again binomial, this time with parameters m and i/n. Thus the probability
of sequencing k out of m reads of the A, allele conditional upon the population allele
frequency is
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The expected value of the frequency of the allele in our sequenced sample, k/m, can then

be easily found through the use of conditional expectations

E{k/m} = E{E{k/mli/n}}
> E{k/mli/n} x Prob(i)

i=0

i m(:,{ ) (n)p‘(l -p)" ' =p (2)

i=0 )

We can find the second moment through similar means

E{(k/m)?} = BE{E{(k/m)|i/n}}
_ ZE{(k/m)2|i/n} x Prob(1)
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There are two terms in equation 3. This second term is immediately recognizable as the
second moment that we examined above (i.e. P—(lf‘y + p?). The first term after a bit of
aleebra turns into
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putting it all together, the expectation of the second moment, conditional upon the pop-
ulation allele frequency is

E{(k/m)’} = p(1—p)/m—p(1—-p)/mn+p(1-p)/n
With that result in hand we are now ready to write down the expectation of heterozygosity
(H = 2p(1 — p)) given our population allele frequency
E{H} = E{2p(1-p)}=2(E{p} - E{p’})

= 2(p = p(1 = p)/m+p(1 - p)/mn - p(1 -p)/n)

= 2p(1-p)((n —1)/n)((m — 1)/m) (4)
This leads to a simple bias correction on our estimates of heterozygosity which is n/(n —
1)xm/(m—1). Figure S7 shows coalescent simulation results, where we generated samples
from the standard coalescent model, and then resampled chromosomes with replacement
to a coverage depth m. We then applied both the “double” correction derived here and the
standard single correction. As can be seen in that figure, we do indeed have an unbiased

estimator of heterozygosity if we correct for both the original size of our pooled sample
and the coverage.
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FIGURE S5.—Simulation results showing the corrected heterozygosity (eqn 4) is effective across a range of
coverages used in this manuscript

Estimating ¢

Of interest to us is coming up with an unbiased estimator of § = 4Nu in the face of our
pooled sampling strategy. Recently (Futschik and Schlotterer 2010) have done quite a bit
of work on this problem, and they were able to come up with corrected estimators for
6,i and 6,,. Here we derive ostensibly similar results through different means, and arrive
at a generalized correction for pooled sampling which allows for construction of arbitrary
estimators of # as linear combinations of the site frequency spectrum using the system of
(Achaz 2008).

We start by generalizing equation 1 of the supplement across the sample site frequency
spectrum (SFS) expected under the standard neutral model. The probability of observing
an allele segregating at frequency i out of n in a standard sample is Prob(i|n) = 1/ia,,
where a, = Z::ll 1/i (Ewens 2004). Thus the probability of observing an allele at fre-
quency k out of m reads in our pooled sequence sample unconditional on the population
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frequency is
n—1

Prob(k|lm,n) = " Prob(K|m,n,i)Prob(i)

i=1

= "i (7:) (i/n)*(1 — i/n)™*(1/ia,) ®)

=1

This expression allows us to write down the expected number of sites segregating at
frequency k out of m, call it Y} as a function of the mutation rate §. Conditioning on the
expected number of segregating sites S in our initial sample of size n allows us to write
down the expected values of the Y;s as

E{Y:} E{S} x Prob(k|m,n)

n—1
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To check the accuracy of this expression we performed coalescent simulations with
a specified sample size n and mutation rate §. The initial site frequency spectrum was
recorded and then transformed to mimic our pooled sequencing by sampling alleles at
each segregating site with replacement. This yields a transformed SFS Y - see figure S6.

Given the accuracy of our correction for the SF'S we move on to derive a bias corrected
estimation scheme for . In particular we note that rearrangement of equation 6 suggests
a moment estimator of the type derived in Fu (1995),

_Y 1
" a, Prob(k|m,n)

Achaz (2009) noted that linear combinations of the SFS can be used to derive new
estimators of # given some arbitrary weighting scheme. In this context we can write down
the bias corrected version of Achaz’s generic estimator as

m—1

aﬂ Zku)k Z ¢ kPTOb k|m n) M

In this manuscript we focus attention on Tajima’s nucleotide diversity (0 ) and Fay
and Wu's () (Tajima 1983; Fay and Wu 2000). To show the potential generality of
our correction scheme we present coalescent simulation results as before where we have
estimated # using six different weighting schemes: w, ;, wy,, and wy,, each with and
without use of singletons
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Weg = N—1i
Wiy = 1

1
Wwi = 1

In the case where singletons are ignored each of the w, = 0. As can be seen in Figure
S7 our bias corrected estimates are quite accurate, thus the framework we have introduced
here should be general.
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FIGURE S6.—Simulation results showing the correspondence between the observed and expected site frequency spectrum as m
the sequencing depth changes. 1000 coalescent simulations were run with 2=10 and 8=10. The expected values in red are
derived from equation 6. Shown for comparison in blue are the expectations under the standard neutral model.
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Corrected Estimators
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FIGURE S7.—Simulation results showing the performance of our bias corrected estimators of 6. 1000 coalescent simulations
were run with n = 40 and 8 = 10. Uncorrected estimates are shown in black.
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