4 SI M. Grillo et al.

TABLE S1 ${\it Analysis of heteroallelic combinations between } {\it psq^{rum} and other } {\it psq} {\it alleles or deficiencies uncovering } {\it psq}$

psq alleles or deficiencies	homozygous phenotype	maternal-effect phenotype of heteroallelic combination with psq ^{rum}	nature of mutation	reference
psq[rum]	All embryos show terminal defects (lack of		EMS-induced; G to A nucleotide	this work
	structures posterior to A7; n=100). In		substitution affecting the splicing donor site	
	addition embryos frequently show deletions		of intron 6, which is common to all known	
	of one or more abdominal segments.		psq transcripts. This leads to partial	
			retention of the intron in the mRNA and is	
			predicted to cause the addition of 16 amino	
			acids followed by a stop codon.	
psq[8109]	Decreased viability of adults, female sterile,	96% of embryos show little cuticle, $4%$ of	P{PZ} insertion into the largest intron of	HOROWITZ and BERG 1995
	posterior group, dorsalized eggshell and	embryos develop contiguous cuticle and	psq-1. Aberrant fusion protein created.	
	embryo, early oogenesis defects.	lack terminal structures (n=100)		
psq[0115]	Decreased viability of adults, female sterile,	94% of embryos show little or no cuticle,	$P\{PZ\}$ insertion into the largest intron of	HOROWITZ and BERG 1995
	posterior group, dorsalized eggshell and	6% of embryos develop contiguous cuticle	psq-1. Aberrant fusion protein created.	
	embryo, early oogenesis defects.	and lack terminal structures (n=100)		
psq[fs1]	Female sterile, posterior group,	Embryos do not hatch. 80% of embryos	P{lacW} insertion into the first intron of	Siegel et al. 1993
	grandchildless	lack segment A8 and/or spiracles (n=50)	psq-1.	
psq[rev2]	n.d. *	Fertile	Isolated as EMS-induced revertant of psq	Ferres-Marco et al. 2006
			overexpression in the eye. Deletion of 11	
			bp, resulting in a premature stop codon in	
			the BTB domain. The	
			$P\{GSV1\}lola[GS88A8] \ insertion \ is \ still$	
			present on the chromosome.	

M. Grillo et al. 5 SI

psq[rev4]	n.d. *	Many collapsed eggs. 6.25% of embryos	Isolated as EMS-induced revertant of psq	Ferres-Marco et al. 2006
		develop contiguous cuticle. These embryos	overexpression in the eye. Nucelotide	
		lack abdominal segments (n=80).	substitution causing a Q530>stop	
			mutation. The P{GSV1}lola[GS88A8]	
			insertion is still present on the	
			chromosome.	
psq[rev7]	n.d. *	Fertile	Isolated as EMS-induced revertant of psq	Ferres-Marco et al. 2006
			overexpression in the eye. Amino acid	
			replacement M1I in the start Methionine	
			of Psq1. The P{GSV1}lola[GS88A8]	
			insertion is still present on the	
			chromosome.	
psq[rev9]	n.d. *	Weakly fertile. Adults show narrow	Isolated as EMS-induced revertant of psq	Ferres-Marco et al. 2006
		blistered wings with extra veins. Embryos	overexpression in the eye. G to A	
		do not show terminal or other	nucleotide substitution affecting the	
		morphological defects (n=50).	splicing donor site of intron 2 (72 bp),	
			leading to retention of the intron in the	
			mRNA. This causes the in-frame addition	
			of 24 amino acids within the BTB/POZ	
			domain, presumably disrupting the	
			conserved BTB pocket domain, which is	
			important for dimerization. The	
			P{GSV1}lola[GS88A8] insertion is still	
			present on the chromosome.	
psq[rev12]	n.d. *	90% of embryos show little or no cuticle,	Isolated as EMS-induced revertant of psq	Ferres-Marco et al. 2006
		10% of embryos develop contiguous cuticle	overexpression in the eye. Amino acid	
		and lack terminal structures (n=80)	replacement G867D in the third PSQ	
			repeat. The P{GSV1}lola[GS88A8]	
			insertion is still present on the	
			chromosome.	

6 SI M. Grillo et al.

psq[rev14]	n.d. *	98% of embryos show little or no cuticle, 2% of embryos develop contiguous cuticle and show posterior and terminal defects (n=100)	Isolated as EMS-induced revertant of <i>psq</i> overexpression in the eye. Nucleotide substitution causing a Q582>stop mutation. The P{GSV1}lola[GS88A8] insertion is still present on the chromosome.	FERRES-MARCO et al. 2006
psq[KG02404]	Viable, female-sterile	Embryos do not hatch. 60% of embryos lack segment A8 and/or spiracles (n=50)	P{SUPor-P} insertion in psq-1 5'-UTR	Bellen et al. 2004
psq[KG00811]	Lethal	Fertile	P{SUPor-P} insertion in the largest intron of <i>psq-1</i> , 0.7 kb downstream of the transcription start site of <i>psq-3</i> transcripts	Bellen et al. 2004
psq[EP2011]	Viable, female-sterile. Homozygous females lay no eggs.	Embryos do not develop cuticle (n=100).	P{EP} insertion in the largest intron of <i>psq-1</i> , 71 bp upstream of the transcription start site of <i>psq-3</i> transcripts	Bellen et al. 2004
Df(2R)47A		Most embryos undeveloped, few embryos with little cuticle		FlyBase
Df(2R)E3363		Most embryos undeveloped, few embryos develop and show terminal defects		FlyBase

Phenotypes of embryos from females carrying heteroallelic combinations of *psq*^{rum} are indicated. *: We were unable to determine homozygous phenotypes of the *psq* revertant alleles, all of which are lethal in homozygous state and in all trans-heterozygous combinations tested. Lethality of these chromosomes is presumably due to the presence of additional mutations or due to the P{GSV1}lola[GS88A8] P-element insertion.

REFERENCES:

BELLEN, H. J., R. W. LEVIS, G. LIAO, Y. HE, J. W. CARLSON et al., 2004 The BDGP gene disruption project: single transposon insertions associated with 40% of Drosophila genes. Genetics 167: 761-781.

FERRES-MARCO, D., I. GUTIERREZ-GARCIA, D. M. VALLEJO, J. BOLIVAR, F. J. GUTIERREZ-AVIÑO et al., 2006 Epigenetic silencers and Notch collaborate to promote malignant tumours by Rb silencing. Nature 439: 430-436.

HOROWITZ, H., and C. A. BERG, 1995 Aberrant splicing and transcription termination caused by P element insertion into the intron of a Drosophila gene. Genetics 139: 327-335.

SIEGEL, V., T. A. JONGENS, L. Y. JAN and Y. N. JAN, 1993 pipsqueak, an early acting member of the posterior group of genes, affects vasa level and germ cell-somatic cell interaction in the developing egg chamber. Development 119: 1187-1202.