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SUPPORTING METHODS AND RESULTS2

MCMC algorithm We developed a Metropolis-Hastings MCMC algorithm (Gamerman3

and Hedibert 2006) to obtain samples from the joint posterior probability distribution for4

all model parameters. Haplotype frequencies were estimated using independence or random-5

walk chains. When independence chains were used, proposal values for haplotype frequencies6

(a vector pij containing values for each locus and population) were sampled from Dirichlet7

distributions that were independent of p from the previous time-step and similar in form8

to the expected posterior distribution for these parameters. This proposal distribution is9

very efficient when dealing with few haplotypes and intermediate haplotype frequencies.10

Random-walk chains were used when these criteria were not met, which involved sampling11

haplotype frequencies from Dirichlet distributions that were proportional to the vector pij12

from the previous MCMC step. At least one of these two proposal algorithms generally13

worked well with each data set, however, more complicated, alternative proposal distributions14

might be considered when a very large number of haplotypes are analyzed. The α and β15

parameters associated with the conditional prior on haplotype frequencies were estimated16

using random-walk chains. Specifically, new values for each α and β pair were proposed17

from bivariate Gaussian distributions centered on the previous parameter values with user18

adjusted variance and covariance. Specification of a high covariance between proposal values19

of α and β was imposed to increase chain mixing. The MCMC algorithm was written in C++20

using the GNU Scientific Library (Galassi et al. 2009) and is available from the authors at21

http://www.uwyo.edu/buerkle/software/ as the stand-alone software bamova.22

Simulations: estimation of φ statistics We conducted a series of simulations to deter-23

mine whether the proposed model provided reasonable estimates of genome-level φ-statistics.24

For these simulations we were solely concerned with genetic differentiation among popula-25
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tions (rather than also considering differentiation among groups of populations). For each26

of our three likelihood models we simulated sequence data using an infinite sites coalescent27

model (using R. Hudson’s software ms ; Hudson 2002). One group of data consisted of28

sequences from 25 genetic regions, whereas the second group consisted of sequences from29

500 genetic regions. All simulations assumed five populations split from a common ancestor30

τ generations in the past, where τ has units of 4Ne. We varied τ from 0 to 1 in steps of31

0.05 to produce 21 data sets each for 25 and 500 loci. The ancestral population and all five32

descendant populations were assigned population mutation rates θ = 4Neµ of 0.5, where µ33

is the per locus mutation rate. We assumed no migration following population subdivision.34

Forty gene copies were sampled from each of the five populations. For the known haplotype35

model analyses we treated the simulated sequences directly as the sampled data. For NGS–36

individual model and NGS-population model analyses we re-sampled the simulated sequence37

data sets such that coverage for each sequence was Poisson distributed (λ = 2). For the38

NGS–individual model analyses we retained information on which individual each sequence39

came from, whereas we only retained population identification for NGS-population model40

analyses. Each data set was analyzed using our bamova software, with MCMC details as41

described in the main document.42

MCMC implementation of the proposed Bayesian models accurately quantified genetic43

structure among five simulated populations with sequence data from 25 or 500 genetic re-44

gions (Figure S1). In general, estimates of mean genome-level φST (µST ) increased with45

the time since divergence of the five populations (τ). Credible intervals for genome-level46

parameters were relatively narrow, particularly when estimates were based on 500 genetic47

regions (Figure S1, S2). Moreover, credible intervals, and thus the uncertainty in genome-48

level parameters, were similar for all three first-level likelihood models (known haplotype49

model, NGS-individual model, and NGS-population model). We detected considerable varia-50

tion in the extent of population structure among genetic regions (and hence non-zero σST for51

genome-level φST ), except when the population divergence time was very low (Fig. S2). Pos-52
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terior probability estimates for µST were similar to the empirical mean of the locus-specific φ53

statistics calculated directly from the raw data; however, the estimates of σST were generally54

lower than the empirical standard deviation of φST from the raw data.55

In the analyses of simulated data sets, φST increased reliably and as expected with time56

since population divergence. Moreover, estimates of genome-level φST using the known57

haplotypes model were very similar to non-Bayesian point estimates of mean φST (Figure58

S1). Additionally the estimates of genome-level φST for the known haplotypes model, the59

NGS–individual model, and the NGS–population model were similar. This similarity in re-60

sults among models suggest that high-coverage NGS data can provide parameter estimates61

with precision and accuracy equivalent to Sanger sequencing. Furthermore, the estimates62

of genome-level φST for the SeattleSNPs human sequence data and chromosome-level φST63

for the worldwide human SNP data (0.080–0.139) were similar to mean levels of genetic64

differentiation among human populations based on FST (e.g., FST = 0.09–0.14 for Yoruba,65

European, Han Chinese and Japanese populations; Weir et al. 2005; Barreiro et al.66

2008). An important attribute of the model is that it also provides an accurate estimate67

of the uncertainty in the parameter estimates. This is an attribute not necessarily shared68

by non-Bayesian methods of parameter estimation, particularly when hierarchical or derived69

parameters are involved (Link and Baker 2009).70

Human SeattleSNP data: alternative data subsets In addition to analysing the71

SeattleSNPs data set based on the first five SNPs in each gene we analysed four additional72

subsets of these data: 1) sequences based on the middle five SNPs in each gene, 2) sequences73

based on the last five SNPs in each gene, 3) sequences based on five SNPs spaced evenly74

across each gene, 4) and sequences based on every 12th SNP in each gene (mean number of75

SNPs = 5.24, sd = 0.423). Analyses of these data sets were as described in the main text76

for the first five SNPs data set.77

We classified four genes as high φST outliers (using a = 0.5) in two or more of the data78
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subsets (Figs. 1, S3). Three of these genes, HSD11B2, FOXA2, and POLG2 were classified79

as φST outliers based on the ’first five SNPs’ data subset, and are described in the main80

document. Other outlier gene identified in more than one data subset was CPSF4, which81

encodes the cleavage polyadenylation specificity factor subunit 4 protein and is an essential82

component of pre-mRNA 3’ processing in mammals (Barabino et al. 1997). Estimates83

of φST for CPSF4 were as high as 0.382 (95% ETPI 0.262–0.496; ‘last five SNPs’ data84

subset, Fig. S3). Four additional genes were identified as high φST outliers in single subsets85

of the data: FUT2, IL1F6, EPPB9, and IKBKB. When classified as outliers these genes86

had φST estimates similar to the genes detected as outliers more than once (Figs. 1, S3).87

Interestingly, FUT2 was classified as a candidate gene experiencing balancing selection in88

European Americans based on levels of polymorphism and intermediate-frequency alleles by89

Andres et al. (Andrés et al. 2009) and is generally regarded as a well-established target90

of balancing selection (contrary to our findings). Variation among data subsets in whether91

genes were detected as outliers depended both on the distribution of divergent nucleotides92

along each gene and the extent of divergence at each of these nucleotides (Fig. 2). No genes93

were identified as low φST outliers, nor were any genes identified as high φST outliers using94

a = 0.95.95
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