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S.1 Notation

We briefly recall here the notation that was used along the paper. Moreover we introduce some

new notation to easy the the illustration of the MCMC scheme.

Let Y and X the n × q and n × p matrix of the responses and predictors, respectively. Let

Γ = {γlkj , 1 ≤ l ≤ L, 1 ≤ k ≤ q, 1 ≤ j ≤ p} the matrix of latent binary values, where L is

the number of simulated chains, q is the number of responses and p is the number of predictors

and let Γk = (γ1k, . . . ,γlk, . . . ,γLk)
T the L × p latent binary matrix for the kth response in

expanded state-space, where γlk = (γlk1, . . . , γlkj , . . . , γlkp)
T . Similarly let Ω = {ωlkj , 1 ≤ l ≤

L, 1 ≤ k ≤ q, 1 ≤ j ≤ p} the matrix of selection probability with ωlkj = ωlk × ρlj and let Ωk =

(ω1k, . . . ,ωlk, . . . ,ωLk)
T the L×p selection matrix for the kth response in expanded state-space,

where ωlk = (ωlk1, . . . , ωlkj, . . . , ωlkp)
T . For a given chain l, let ωl = (ωl1, . . . , ωlk, . . . , ωlq)

T

and ρl = (ρl1, . . . , ρlj, . . . , ρlp)
T the ‘row’ and the ‘column’ effect, respectively. Finally the

temperature ladder for each regression equation k is denoted by tk = (t1k, . . . , tlk, . . . , tLk)
T

with 1 = t1k < t2k < . . . < tLk.
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S.2 Technical details of MCMC implementation

S.2.1 Full conditionals

Given (6), to sample the binary latent value γlkj , the selection probability ωlkj = ωlk × ρlj and

the scaling coefficient τ , the tempered full conditionals in the expanded state-space are:

• p(γlk| · · · ) ∝ p(yk|X,γlk, τ)
1/tlk

∏p
j=1 p(γlkj|ωlkj)

1/tlk

• p(ωlk| · · · ) ∝ p(ωlk)
1/tlk

∏p
j=1 p(γlkj|ωlkj)

1/tlk

• p(ρlj| · · · ) ∝ p(ρlj)
∏q

k=1 p(γlkj|ωlkj)
1/tlk

• p(τ | · · · ) ∝ p (τ)
∏L

l=1

∏q
k=1 p(yk|X,γlk, τ)

1/tlk

Note that in the full conditional p(ρlj| · · · ) the prior density p(ρlj) is not tempered and the reason

will be explained in Supporting Information S.2.3.

S.2.2 Γ update

The update of the elements of the q × p latent binary matrix Γ is of paramount importance and

efficient algorithms are required in order to visit the very large model space (2p)q and to escape

from local modes. In the following we provide some technical details omitted from the main

text of the local and global moves that we found useful to implement. At each sweep of the

algorithm each/both of moves can be applied to all the q regression equations or to a random

without replacement subgroup of them (see Richardson et al. (2011) for alternative subgroup

selection with adaptive probability).
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Local move

We first introduce the single chain sampling scheme and then we extend the results for multiple

chains. There are many ways to update locally γk, but we found useful to apply an extension of

Bottolo and Richardson (2010) proposal, where traditional samplers used in Bayesian variable

selection (i.e. MC3, Gibbs sampler and Reversible Jump) are replaced by a Metropolis-within-

Gibbs sampler known as Fast Scan Metropolis-Hastings (FSMH). LetLk(j=1) = p(yk|X,γk(j=1), τ)

and Lk(j=0) = p(yk|X,γk(j=0), τ) with γk(j=1) = (γk1, . . . , γkj = 1, . . . , γkp)
T and γk(j=0) =

(γk1, . . . , γkj = 0, . . . , γkp)
T the marginal likelihood once the regression coefficients βk and

the residual error variance σ2
k are integrated out. Moreover let p(γkj = 1|ωkj) = ωkj and

p(γkj = 0|ωkj) = 1− ωkj . If a Gibbs sampler update is performed, a new value of γkj is drawn

from a Bernoulli distribution with probability

θkj =
ωkjLk(j=1)

(1− ωkj)Lk(j=0) + ωkjLk(j=1)

(S.1)

if, in the previous iteration, γkj = 0 since by independence p(γkj = 1|γk\j,ωk) = p(γkj =

1|ωkj) (with an obvious modification if γkj = 1 in the previous iteration). However in a sparse

framework, where pγk
� p, this probability is dominated by ωkj and if ωkj is small (because

for instance ωk or ρj or both are small) also θkj will be small. For instance, it easy to show that

when pγk
� p and therefore by Kohn et al. (2001) ak � bk, the sampled value of ωk is, on

average, very small

E(ωk|yk) =
pγk

+ ak
p+ ak + bk

.

It turns out that, if γkj = 0, it is likely that also the new sampled value will be zero. Kohn et al.

(2001) propose to split the acceptance probability of the Metropolised version of (S.1) (to add a
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new covariate in the regression)

1 ∧ ωkjLk(j=1)

(1− ωkj)Lk(j=0)

Qkj(1 → 0)

Qkj(0 → 1)
,

where Qkj(· → ·) is the proposal density, into two parts: firstly, sampling a proposed value of

γkj , γ∗
kj , from a Bernoulli distribution with probability ωkj and then, if γ∗

kj �= γkj , accept the new

value with probability

1 ∧ Lk(j=1)

Lk(j=0)

since Qkj(0 → 1) = ωkj and Qkj(1 → 0) = 1− ωkj , with an obvious modification if a deletion

is proposed. The advantage of this scheme is that the time consuming evaluation of the marginal

likelihood Lkj is limited to the set of variables where γ∗
kj �= γkj .

The same sampling scheme can be extended to a parallel tempering set-up as illustrated in

Bottolo and Richardson (2010). In this case the Metropolis-within-Gibbs acceptance probability

of the jth predictor in the kth regression and the lth chain is

1 ∧
L
1/tlk
lk(j=1)

L
1/tlk
lk(j=0)

,

where L
1/tlk
lk(j=1) = [p(yk|X,γlk(j=1), τ)]

1/tlk and similarly for L1/tlk
lk(j=0), since adding (deleting) a

covariate in the regression equation is proposed with probability Qlkj(0 → 1|tlk) = ω̃lkj(tlk)

(Qlkj(1 → 0|tlk) = 1− ω̃lkj(tlk)), with

ω̃lkj(tlk) =
ω
1/tlk
lkj

ω
1/tlk
lkj + (1− ωlkj)1/tlk

the renormalised probability [p(γlkj = 1|ωlkj)]
1/tlk = ω

1/tlk
lkj and tlk the temperature attached to

the kth regression in the lth chain. Further discussion and advantages of this sampling scheme

over MC3, Reversible Jump and Gibbs sampler in a multiple chain set-up when the number of
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predictors is very large with respect to the number of truly associated variables are presented in

Bottolo and Richardson (2010).

Global moves

We recall that global moves are bold moves that try to swap part or the whole state of two ran-

domly selected chains among the population of chains (Liang and Wong, 2000). In the following

we present the accepted probability of crossover operator (partial swap), exchange operator and

all-exchange operator (full swap).

Suppose that in the kth regression two new latent binary vectors γ∗
lk and γ∗

rk are generated

from two preselected chains, l and r, according to some crossover operator (Liang and Wong,

2000; Bottolo and Richardson, 2010). The proposed population of chains in the kth regression

Γ∗
k = (γ1k, . . . ,γ

∗
lk, . . . ,γ

∗
rk . . . ,γLk)

T is accepted with probability

1 ∧ exp {f(γ∗
lk|ωlk, τ)/tlk + f(γ∗

rk|ωrk, τ)/trk}
exp {f(γlk|ωlk, τ)/tlk + f(γrk|ωrk, τ)/trk}

Qk(Γ
∗
k,Γk|Ωk, τ, tk)

Qk(Γk,Γ∗
k|Ωk, τ, tk)

,

where f(γlk|ωlk, τ) = log(p(yk|X,γlk, τ))+
∑

j log(p(γlkj|ωlkj)) and Qk(Γk, ·|Ωk, τ, tk) is the

proposal density which is defined as the product of the selection probability and the crossover

operator probability (Liang and Wong, 2000). The transition density depends on the selection

probabilities Ωk in the kth regression, the scaling coefficient τ and the kth regression tempera-

ture ladder tk.

The exchange operator can be seen as special case of the crossover operator where the whole

information contained in the two preselected chains with uniform probability l and r are tenta-

tively swapped with probability

1 ∧ exp {f(γrk|ωlk, τ)/tlk + f(γlk|ωrk, τ)/trk}
exp {f(γlk|ωlk, τ)/tlk + f(γrk|ωrk, τ)/trk}
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since Qk(Γk,Γ
∗
k|Ωk, τ, tk) = Qk(Γ

∗
k,Γk|Ωk, τ, tk) because the selection probability is uniform

over the L chains (random selection without replacement).

Finally, in the all-exchange operator the chains whose states are swopped are selected at

random with probability equal to

phk =
p̃hk∑1+L(L−1)/2

h=1 p̃hk
, (S.2)

where in (S.2) each pair (l, r < l) is denoted by a single number h, p̃hk = p̃(l,r)k, including the

rejection move, h = 1 with p̃(l,r)k = exp{(f(γrk|ωrk, τ)− f(γlk|ωlk, τ))(1/tlk − 1/trk)}.

S.2.3 Ω update

For each chain l, l = 1, . . . , L, we update the elements of the q × p selection probability matrix

Ω by using a Metropolis-within-Gibbs sampler with adaptive proposals. Let ω∗
lk and ρ∗lj the

proposed new values of the kth row effect and jth column effect in the lth chain respectively.

The acceptance probability of the two parameters is

1 ∧
[
(ω∗

lk)
pγlk (1− ω∗

lk)
p−pγlk

ω
pγlk
lkj (1− ωlkj)

p−pγlk

Beta(ω∗
lk; aωk

, bωk
)|J(λ−1(ω∗

lk))|
Beta(ωlk; aωk

, bωk
)|J(λ−1(ωlk))|

]1/tlk
Qlk(λ

∗
lk, λlk)

Qlk(λlk, λ∗
lk)

(S.3)

and

1 ∧ Ga(ρ∗lj; cρj , dρj)|J(ϕ−1(ρ∗lj))|
Ga(ρlj; cρj , dρj)|J(ϕ−1(ρlj))|

q∏
k=1

[
(ω∗

lkj)
γlkj(1− ω∗

lkj)
1−γlkj

ω
γlkj
lkj (1− ωlkj)1−γlkj

]1/tlk
Qlj(ϕ

∗
lj, ϕlj)

Qlj(ϕlj, ϕ∗
lj)

, (S.4)

where in (S.3) pγlk
= γT

lk1p, λlk = logit(ωlk), J(λ−1(ωlk)) is the Jacobian of the inverse trans-

formation evaluated in ωlk and Beta(·) is the beta density function, while in (S.4) J(ϕ−1(ρlj))

is the Jacobian of the inverse transformation evaluated in ρlj , ω∗
lkj = ωlk × ρ∗lj , and Ga(·) is the

gamma density function. As a technical point, since the prior density p(ρlj) cannot be indexed
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by k, in order to write the acceptance probability (S.4), in our model the prior for ρlj is not

tempered.

We sample the proposed new values ω∗
lk and ρ∗lj after suitable transformation from Qlk(λlk, ·) =

φ(λlk, s
2
lk(b)) and Qlj(ϕlj, ·) = φ(ϕlj, s

2
lj(b)), respectively, where slk(b) and slk(b) are the adap-

tive proposals’ standard deviations at batch b and φ(·) is the normal density function. Following

Roberts and Rosenthal (2009), asymptotic convergence is obtained enforcing the diminishing

adaptation condition and imposing the bounded convergence condition. For the former con-

dition, after the batch bth of 50 sweeps, say, the proposals’ standard deviation are updated as

follow: slk(b + 1) = slk(b) ± δs(b) and slj(b + 1) = slj(b) ± δs(b), where we add (subtract)

to the current values slk(b) and slj(b) the quantity δs(b) = min{0.01, b−1/2} if the acceptance

frequency of (S.3) and (S.4) are higher (lower) than the optimal acceptance rate (0.44), respec-

tively. The latter condition is fulfilled assuming that Lλ < slk < Uλ and Lϕ < slj < Uϕ for

some large positive (negative) values of Uλ and Uϕ (Lλ and Lϕ).

S.2.4 τ updates

The variable scaling coefficient is common to all the q regression equations and to all L chains.

A new value τ ∗ is obtained using a Metropolis-with-Gibbs with acceptance probability

1 ∧
Ga(τ ∗; 1/2, n/2)|J(ψ−1(τ ∗))|

L∏
l=1

q∏
k=1

p(yk|X,γlk, τ
∗)1/tlk

Ga(τ ; 1/2, n/2)|J(ψ−1(τ))|
L∏
l=1

q∏
k=1

p(yk|X,γlk, τ)1/tlk

Q(ψ∗, ψ)
Q(ψ, ψ∗)

,

where ψ = log(τ), J(ψ−1(τ)) is the Jacobian of the inverse transformation evaluated in τ ,

Ga(·) is the gamma density function and Q(ψ, ·) = φ(ψ, 1). As in (S.4), the prior density is not

tempered since we are sampling a common value across the q regressions and the L chains. The
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rational of this choice, for a given k, is illustrated in detail in Bottolo and Richardson (2010).

S.2.5 Temperature placement

During the burn-in, for each regression equation k, we automatically tune the temperature ladder

in order to reach a specified acceptance rate of the exchange operator. In particular we chose

as temperature ladder the geometric scale, such that the ratio of two consecutive temperatures

is constant, t(l+1)k/tlk = rk. Then after batch bth, say 100 sweeps, we update rk as follows:

rk(b+ 1) = rk(b)± δr, where we add (subtract) to the current values rk(b) the quantity δr if the

acceptance frequency of the exchange operator are higher (lower) than the optimal acceptance

rate (0.50). For details on how to fix the value of δr interested reader can refer to Bottolo and

Richardson (2010). For a discussion of different temperature scales, see Atchadé et al. (2010).

S.3 Post-processing

For a fixed k,

p(γ
(t)
k |yk) =

1

S

S∑
s=1

p(yk|X,γ
(t)
k , τ (s))p(τ (s))

p∏
j=1

p(γ
(t)
kj |ω(s)

kj )p(ρ
(s)
j )

is the model posterior probability for the kth regression, where γ
(t)
k = (γ

(t)
k1 , . . . , γ

(t)
kq )

T is latent

binary vector recorded at the tth sweep of the algorithm, p(yk|X,γ
(t)
k , τ (s)) is the marginal

likelihood and τ (s), ω(s)
kj = ω

(s)
k × ρ

(s)
j and ρ

(s)
j are the values of the parameters recorded at the

sth sweep.

When the q regressions are jointly considered, the configuration posterior probability is de-
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fined as

p(Γ(t)|Y ) =
1

S

S∑
s=1

p(τ (s))

q∏
k=1

p(yk|X,γ
(t)
k , τ (s))p(ω

(s)
k )

p∏
j=1

p(γ
(t)
kj |ω(s)

kj )p(ρ
(s)
j )

with Γ(t) the configuration of the latent binary matrix at sweep tth.
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Figure S.1: Heat-map of the pattern of correlation, linkage disequilibrium (LD) for Yoruba
population, HapMap project, in the region ENm014 spanning 500-Kb (chrom 7: 126,368,183-
126,865,324 bp). Red squares indicate the marker where the hot-spots have been simulated
(SNP 30, 161, 225, 239, 362 and 466).
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Figure S.2: Map configuration in the four simulated scenarios. From top to bottom, left to right:
SIM1, SIM2, SIM3 and SIM4. SIM1, q = 100 transcripts simulated with SNP 30 and 239 influ-
encing transcripts 1-20 and 71-80, SNP 161 influencing transcripts 17-20, SNP 225 influencing
transcripts 91-100, and finally eQTLs 362 and 466 influencing transcripts 81-90. Altogether 94
transcript-SNP associations are simulated in 50 distinct transcripts; SIM2, 100 responses simu-
lated with only three hot spots (30, 161, 239) and the same simulated pattern of association as
in the first scenario leading to 64 transcript-SNP associations in 30 distinct transcripts; SIM3,
the simulation set-up is identical to the first scenario for the first 100 responses, but the number
of simulated responses is increased to q = 1, 000, simulating further 900 transcripts from the
noise; SIM4, as in the second simulated data set for the first 100 responses, with additional 900
responses simulated from the noise, and altogether q = 1, 000. The symbol ‘G’ in the y-axis
identifies groups of transcripts that are influenced by the same pattern of markers. SIM1 and
SIM2, G1: transcripts 1-16; G2: transcripts 17-20; G3: 21-70; G4: transcripts 71-80; G5: tran-
scripts 81-90; G6: transcripts 91-100. SIM3 and SIM4 as before with G7: transcripts 101-1000.
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Figure S.3: Heat-map of the signals detected by each method in the first simulated exam-
ple, SIM1, and averaged across the 25 replicates. In M-SPLS the significant (non-significant)
transcript-marker association is recoded as 1 (0). From top to bottom, left to right: HESS, M-
SPLS, MOM and BAYES. The symbol ‘G’ in the y-axis identifies groups of transcripts that are
influenced by the same pattern of markers. Red triangles indicate where the hot-spots have been
simulated.
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Figure S.4: Heat-map of the signals detected by each method in the second simulated exam-
ple, SIM2, and averaged across the 25 replicates. In M-SPLS the significant (non-significant)
transcript-marker association is recoded as 1 (0). From top to bottom, left to right: HESS, M-
SPLS, MOM and BAYES. The symbol ‘G’ in the y-axis identifies groups of transcripts that are
influenced by the same pattern of markers. Red triangles indicate where the hot-spots have been
simulated.
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Figure S.5: Heat-map of the signals detected by each method in the third simulated exam-
ple, SIM3, and averaged across the 25 replicates. In M-SPLS the significant (non-significant)
transcript-marker association is recoded as 1 (0). From top to bottom, left to right: HESS, M-
SPLS, MOM and BAYES. The symbol ‘G’ in the y-axis identifies groups of transcripts that are
influenced by the same pattern of markers. Red triangles indicate where the hot-spots have been
simulated.
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Figure S.6: Heat-map of the signals detected by each method in the fourth simulated exam-
ple, SIM4, and averaged across the 25 replicates. In M-SPLS the significant (non-significant)
transcript-marker association is recoded as 1 (0). From top to bottom, left to right: HESS, M-
SPLS, MOM and BAYES. The symbol ‘G’ in the y-axis identifies groups of transcripts that are
influenced by the same pattern of markers. Red triangles indicate where the hot-spots have been
simulated.
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Figure S.7: Trace plot of the latent binary values obtained from BAYES (top) and HESS (bottom)
in SIM1 for the 10 true positive associations simulated in the third hot-spot (j = 225, k =

91, . . . , 100). For the 25 replicates, the output (γkj) of each algorithm was piled up giving rise
to a vector of 50,000 (2,000 × 25) and 125,000 (5,000 × 25) sweeps, respectively. Red dot
and blue cross indicate γkj = 0 and γkj = 1, respectively. HESS correctly identifies the 10
transcript-marker associations as indicated by a large majority of blue crosses. Good MCMC
mixing is clear from the sequence of blue crosses interrupted by red dots and vice versa. On the
contrary, BAYES misses the simulated associations (false negative) and gets stuck in γkj = 0

producing long stripes of consecutive red dots. Overall, the different efficiency in the MCMC
mixing between BAYES and HESS is apparent from the diverse coloured stripe patterns.






